Bonnaud Emma, Oger Philippe M, Ohayon Avigaël, Louis Yoann
SEGULA Technologies, 13 Bis Avenue Albert Einstein, 69100 Villeurbanne, France.
INSA de Lyon, UMR5240 CNRS, Université Claude Bernard Lyon 1, 11, Avenue Jean Capelle, 69621 Villeurbanne, France.
Microorganisms. 2024 Aug 22;12(8):1738. doi: 10.3390/microorganisms12081738.
Climate change and the scarcity of primary resources are driving the development of new, more renewable and environmentally friendly industrial processes. As part of this green chemistry approach, extremozymes (extreme microbial enzymes) can be used to replace all or part of the chemical synthesis stages of traditional industrial processes. At present, the production of these enzymes is limited by the cellular chassis available. The production of a large number of extremozymes requires extremophilic cellular chassis, which are not available. This is particularly true of halophilic extremozymes. The aim of this review is to present the current potential and challenges associated with the development of a haloarchaea-based cellular chassis. By overcoming the major obstacle of the limited number of genetic tools, it will be possible to propose a robust cellular chassis for the production of functional halophilic enzymes that can participate in the industrial transition of many sectors.
气候变化和主要资源的稀缺正推动着新型、更可再生且环境友好型工业流程的发展。作为这种绿色化学方法的一部分,极端酶(极端微生物酶)可用于替代传统工业流程中全部或部分化学合成阶段。目前,这些酶的生产受到现有细胞底盘的限制。大量极端酶的生产需要嗜极端微生物细胞底盘,而目前尚无此类底盘。嗜盐极端酶尤其如此。本综述的目的是介绍基于嗜盐古菌的细胞底盘开发目前面临的潜力和挑战。通过克服遗传工具数量有限这一主要障碍,将有可能提出一种强大的细胞底盘,用于生产可参与多个行业工业转型的功能性嗜盐酶。