Suppr超能文献

针对射频/毫米波功率放大器的硅基氮化镓肖特基栅高电子迁移率晶体管结构在偏置温度应力下的电荷俘获与发射

Charge Trapping and Emission during Bias Temperature Stressing of Schottky Gate GaN-on-Silicon HEMT Structures Targeting RF/mm Wave Power Amplifiers.

作者信息

O'Sullivan Barry, Rathi Aarti, Alian Alireza, Yadav Sachin, Yu Hao, Sibaja-Hernandez Arturo, Peralagu Uthayasankaran, Parvais Bertrand, Chasin Adrian, Collaert Nadine

机构信息

IMEC, Kapeldreef 75, 3001 Leuven, Belgium.

Faculty of Engineering, Vrije Universiteit Brussel, 1050 Ixelles, Belgium.

出版信息

Micromachines (Basel). 2024 Jul 24;15(8):951. doi: 10.3390/mi15080951.

Abstract

For operation as power amplifiers in RF applications, high electron mobility transistor (HEMT) structures are subjected to a range of bias conditions, applied at both the gate and drain terminals, as the device is biased from the OFF- to ON-state conditions. The stability of the device threshold voltage (V) condition is imperative from a circuit-design perspective and is the focus of this study, where stresses in both the ON and OFF states are explored. We see rapid positive threshold voltage increases under negative bias stress and subsequent recovery (i.e., V reduces), whereas conversely, we see a negative V shift under positive stress and V increase during the subsequent relaxation phase. These effects are correlated with the thickness of the GaN layer and ultimately result from the deep carbon-acceptor levels in the C-GaN back barrier incorporated to screen the buffer between the silicon substrate and the epitaxially grown GaN layer. Methods to mitigate this effect are explored, and the consequences are discussed.

摘要

在射频应用中用作功率放大器时,随着高电子迁移率晶体管(HEMT)结构从关态偏置到开态偏置,其栅极和漏极端子会施加一系列偏置条件。从电路设计的角度来看,器件阈值电压(V)条件的稳定性至关重要,这也是本研究的重点,其中探讨了开态和关态下的应力情况。我们发现在负偏置应力下阈值电压会迅速正向增加,随后恢复(即V减小),而相反,在正应力下V会负向偏移,并且在随后的弛豫阶段V会增加。这些效应与GaN层的厚度相关,最终是由C-GaN背势垒中的深碳受主能级导致的,该能级用于屏蔽硅衬底与外延生长的GaN层之间的缓冲层。文中探讨了减轻这种效应的方法,并讨论了其后果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dbc/11356376/db72571fa590/micromachines-15-00951-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验