Suppr超能文献

抗菌聚合物、生物分子和纳米复合材料的合成、制备及应用中的计算方法

Computational Methodologies in Synthesis, Preparation and Application of Antimicrobial Polymers, Biomolecules, and Nanocomposites.

作者信息

Rezić Iva, Somogyi Škoc Maja

机构信息

Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia.

Department of Materials Testing, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia.

出版信息

Polymers (Basel). 2024 Aug 16;16(16):2320. doi: 10.3390/polym16162320.

Abstract

The design and optimization of antimicrobial materials (polymers, biomolecules, or nanocomposites) can be significantly advanced by computational methodologies like molecular dynamics (MD), which provide insights into the interactions and stability of the antimicrobial agents within the polymer matrix, and machine learning (ML) or design of experiment (DOE), which predicts and optimizes antimicrobial efficacy and material properties. These innovations not only enhance the efficiency of developing antimicrobial polymers but also enable the creation of materials with tailored properties to meet specific application needs, ensuring safety and longevity in their usage. Therefore, this paper will present the computational methodologies employed in the synthesis and application of antimicrobial polymers, biomolecules, and nanocomposites. By leveraging advanced computational techniques such as MD, ML, or DOE, significant advancements in the design and optimization of antimicrobial materials are achieved. A comprehensive review on recent progress, together with highlights of the most relevant methodologies' contributions to state-of-the-art materials science will be discussed, as well as future directions in the field will be foreseen. Finally, future possibilities and opportunities will be derived from the current state-of-the-art methodologies, providing perspectives on the potential evolution of polymer science and engineering of novel materials.

摘要

抗菌材料(聚合物、生物分子或纳米复合材料)的设计和优化可以通过分子动力学(MD)等计算方法得到显著推进,分子动力学能深入了解抗菌剂在聚合物基质中的相互作用和稳定性,还可以通过机器学习(ML)或实验设计(DOE)来推进,机器学习或实验设计能预测和优化抗菌效果及材料性能。这些创新不仅提高了抗菌聚合物的开发效率,还能创造出具有定制性能的材料,以满足特定应用需求,确保其使用的安全性和耐久性。因此,本文将介绍抗菌聚合物、生物分子和纳米复合材料的合成与应用中所采用的计算方法。通过利用MD、ML或DOE等先进计算技术,抗菌材料的设计和优化取得了重大进展。将讨论对近期进展的全面综述,以及最相关方法对当前材料科学的贡献亮点,同时还将预见该领域的未来发展方向。最后,将从当前的先进方法中衍生出未来的可能性和机会,为聚合物科学和新型材料工程的潜在发展提供展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c315/11359845/da3c8b69948e/polymers-16-02320-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验