MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
Sci Adv. 2024 Nov 29;10(48):eadr4227. doi: 10.1126/sciadv.adr4227.
Intracellular compartmentalization enhances biological reactions, crucial for cellular function and survival. An example is the carboxysome, a bacterial microcompartment for CO fixation. The carboxysome uses a polyhedral protein shell made of hexamers, pentamers, and trimers to encapsulate Rubisco, increasing CO levels near Rubisco to enhance carboxylation. Despite their role in the global carbon cycle, the molecular mechanisms behind carboxysome shell assembly remain unclear. Here, we present a structural characterization of α-carboxysome shells generated from recombinant systems, which contain all shell proteins and the scaffolding protein CsoS2. Atomic-resolution cryo-electron microscopy of the shell assemblies, with a maximal size of 54 nm, unveil diverse assembly interfaces between shell proteins, detailed interactions of CsoS2 with shell proteins to drive shell assembly, and the formation of heterohexamers and heteropentamers by different shell protein paralogs, facilitating the assembly of larger empty shells. Our findings provide mechanistic insights into the construction principles of α-carboxysome shells and the role of CsoS2 in governing α-carboxysome assembly and functionality.
细胞内区室化增强了生物反应,对细胞功能和生存至关重要。例如羧基体,这是一种用于 CO2 固定的细菌微区室。羧基体使用由六聚体、五聚体和三聚体组成的多面体蛋白壳来包裹 Rubisco,从而增加 Rubisco 附近的 CO2 水平,以增强羧化作用。尽管它们在全球碳循环中发挥着重要作用,但羧基体壳组装背后的分子机制仍不清楚。在这里,我们展示了从重组系统中产生的 α-羧基体壳的结构特征,其中包含所有的壳蛋白和支架蛋白 CsoS2。对最大尺寸为 54nm 的壳组装体进行原子分辨率的冷冻电镜观察,揭示了壳蛋白之间不同的组装界面、CsoS2 与壳蛋白之间详细的相互作用,以驱动壳组装,以及不同壳蛋白同源物形成的杂六聚体和杂五聚体,从而促进更大的空壳组装。我们的发现为 α-羧基体壳的构建原则以及 CsoS2 在控制 α-羧基体组装和功能方面的作用提供了机制上的见解。