IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):10998-11018. doi: 10.1109/TPAMI.2024.3452629. Epub 2024 Nov 6.
Interactive segmentation is a crucial research area in medical image analysis aiming to boost the efficiency of costly annotations by incorporating human feedback. This feedback takes the form of clicks, scribbles, or masks and allows for iterative refinement of the model output so as to efficiently guide the system towards the desired behavior. In recent years, deep learning-based approaches have propelled results to a new level causing a rapid growth in the field with 121 methods proposed in the medical imaging domain alone. In this review, we provide a structured overview of this emerging field featuring a comprehensive taxonomy, a systematic review of existing methods, and an in-depth analysis of current practices. Based on these contributions, we discuss the challenges and opportunities in the field. For instance, we find that there is a severe lack of comparison across methods which needs to be tackled by standardized baselines and benchmarks.
交互式分割是医学图像分析中的一个重要研究领域,旨在通过引入人工反馈来提高昂贵注释的效率。这种反馈采用点击、涂鸦或掩码的形式,允许对模型输出进行迭代细化,从而有效地引导系统朝着所需的行为发展。近年来,基于深度学习的方法将结果推向了一个新的高度,仅在医学成像领域就提出了 121 种方法,使该领域得到了快速发展。在这篇综述中,我们提供了对这个新兴领域的结构化概述,包括全面的分类法、对现有方法的系统回顾以及对当前实践的深入分析。基于这些贡献,我们讨论了该领域的挑战和机遇。例如,我们发现方法之间缺乏严重的对比,这需要通过标准化的基线和基准来解决。