Suppr超能文献

心电图心律失常和心肌梗死的心跳分类。

Electrocardiogram Heartbeat Classification for Arrhythmias and Myocardial Infarction.

机构信息

Department of Computer Science and Information Engineering, National Central University, Taoyuan City 320317, Taiwan.

Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 320317, Taiwan.

出版信息

Sensors (Basel). 2023 Mar 9;23(6):2993. doi: 10.3390/s23062993.

Abstract

An electrocardiogram (ECG) is a basic and quick test for evaluating cardiac disorders and is crucial for remote patient monitoring equipment. An accurate ECG signal classification is critical for real-time measurement, analysis, archiving, and transmission of clinical data. Numerous studies have focused on accurate heartbeat classification, and deep neural networks have been suggested for better accuracy and simplicity. We investigated a new model for ECG heartbeat classification and found that it surpasses state-of-the-art models, achieving remarkable accuracy scores of 98.5% on the Physionet MIT-BIH dataset and 98.28% on the PTB database. Furthermore, our model achieves an impressive F1-score of approximately 86.71%, outperforming other models, such as MINA, CRNN, and EXpertRF on the PhysioNet Challenge 2017 dataset.

摘要

心电图(ECG)是评估心脏疾病的基本且快速的检查方法,对于远程患者监护设备至关重要。准确的心电图信号分类对于临床数据的实时测量、分析、归档和传输至关重要。许多研究都集中在准确的心跳分类上,并且提出了深度神经网络以提高准确性和简单性。我们研究了一种新的心电图心跳分类模型,发现它超越了现有技术模型,在 Physionet MIT-BIH 数据集上达到了惊人的 98.5%的准确率,在 PTB 数据库上达到了 98.28%。此外,我们的模型在 PhysioNet Challenge 2017 数据集上的 F1 得分为约 86.71%,表现优于 MINA、CRNN 和 EXpertRF 等其他模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0400/10051525/567116f30d9c/sensors-23-02993-g001.jpg

相似文献

1
Electrocardiogram Heartbeat Classification for Arrhythmias and Myocardial Infarction.
Sensors (Basel). 2023 Mar 9;23(6):2993. doi: 10.3390/s23062993.
3
Efficient sleep apnea detection using single-lead ECG: A CNN-Transformer-LSTM approach.
Comput Biol Med. 2025 Sep;196(Pt A):110655. doi: 10.1016/j.compbiomed.2025.110655. Epub 2025 Jul 3.
4
ECG synthesis for cardiac arrhythmias: Integrating self-supervised learning and generative adversarial networks.
Artif Intell Med. 2025 Sep;167:103162. doi: 10.1016/j.artmed.2025.103162. Epub 2025 May 26.
5
A systematic review of automated prediction of sudden cardiac death using ECG signals.
Physiol Meas. 2025 Jan 23;13(1). doi: 10.1088/1361-6579/ad9ce5.
6
Automated cardiac arrhythmia detection techniques: a comprehensive review for prospective approach.
Comput Methods Biomech Biomed Engin. 2025 Aug;28(10):1639-1654. doi: 10.1080/10255842.2024.2332942. Epub 2024 Apr 2.
8
A hybrid approach for machine learning based beat classification of ECG using different digital differentiators and DTCWT.
Comput Biol Med. 2025 Aug;194:110426. doi: 10.1016/j.compbiomed.2025.110426. Epub 2025 Jun 10.
9
A machine-learning approach for stress detection using wearable sensors in free-living environments.
Comput Biol Med. 2024 Sep;179:108918. doi: 10.1016/j.compbiomed.2024.108918. Epub 2024 Jul 18.

引用本文的文献

2
Tunable Neuromorphic Switching Dynamics via Porosity Control in Mesoporous Silica Diffusive Memristors.
ACS Appl Mater Interfaces. 2024 Apr 3;16(13):16641-16652. doi: 10.1021/acsami.3c19020. Epub 2024 Mar 17.
3
Attention-assisted hybrid CNN-BILSTM-BiGRU model with SMOTE-Tomek method to detect cardiac arrhythmia based on 12lead electrocardiogram signals.
Digit Health. 2024 Mar 5;10:20552076241234624. doi: 10.1177/20552076241234624. eCollection 2024 Jan-Dec.
4
Automated myocardial infarction and angina detection using second derivative of photoplethysmography.
Phys Eng Sci Med. 2023 Sep;46(3):1259-1269. doi: 10.1007/s13246-023-01293-w. Epub 2023 Jul 3.

本文引用的文献

2
Artificial Intelligence for Cardiac Diseases Diagnosis and Prediction Using ECG Images on Embedded Systems.
Biomedicines. 2022 Aug 19;10(8):2013. doi: 10.3390/biomedicines10082013.
3
Automatic ECG classification and label quality in training data.
Physiol Meas. 2022 Jun 28;43(6). doi: 10.1088/1361-6579/ac69a8.
4
A transformer-based deep neural network for arrhythmia detection using continuous ECG signals.
Comput Biol Med. 2022 May;144:105325. doi: 10.1016/j.compbiomed.2022.105325. Epub 2022 Feb 24.
5
ECG-BiCoNet: An ECG-based pipeline for COVID-19 diagnosis using Bi-Layers of deep features integration.
Comput Biol Med. 2022 Mar;142:105210. doi: 10.1016/j.compbiomed.2022.105210. Epub 2022 Jan 5.
6
Integrating ECG Monitoring and Classification via IoT and Deep Neural Networks.
Biosensors (Basel). 2021 Jun 8;11(6):188. doi: 10.3390/bios11060188.
7
From ECG signals to images: a transformation based approach for deep learning.
PeerJ Comput Sci. 2021 Feb 10;7:e386. doi: 10.7717/peerj-cs.386. eCollection 2021.
8
ECG Images dataset of Cardiac and COVID-19 Patients.
Data Brief. 2021 Jan 18;34:106762. doi: 10.1016/j.dib.2021.106762. eCollection 2021 Feb.
9
Electrocardiogram analysis of patients with different types of COVID-19.
Ann Noninvasive Electrocardiol. 2020 Nov;25(6):e12806. doi: 10.1111/anec.12806. Epub 2020 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验