School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Vancouver General Hospital, Vancouver, British Columbia, Canada.
Am J Pathol. 2024 Dec;194(12):2302-2312. doi: 10.1016/j.ajpath.2024.08.006. Epub 2024 Aug 31.
Delayed diagnosis and treatment resistance result in high pancreatic ductal adenocarcinoma (PDAC) mortality rates. Identifying molecular subtypes can improve treatment, but current methods are costly and time-consuming. In this study, deep learning models were used to identify histologic features that classify PDAC molecular subtypes based on routine hematoxylin-eosin-stained histopathologic slides. A total of 97 histopathology slides associated with resectable PDAC from The Cancer Genome Atlas project were used to train a deep learning model and test the performance on 44 needle biopsy material (110 slides) from a local annotated patient cohort. The model achieved balanced accuracy of 96.19% and 83.03% in identifying the classical and basal subtypes of PDAC in The Cancer Genome Atlas and the local cohort, respectively. This study provides a promising method to cost-effectively and rapidly classify PDAC molecular subtypes based on routine hematoxylin-eosin-stained slides, potentially leading to more effective clinical management of this disease.
延迟诊断和治疗耐药导致胰腺导管腺癌 (PDAC) 死亡率居高不下。鉴定分子亚型可以改善治疗效果,但目前的方法既昂贵又耗时。在这项研究中,使用深度学习模型来识别组织学特征,根据常规苏木精-伊红染色的组织病理学幻灯片对 PDAC 分子亚型进行分类。共有 97 张与可切除 PDAC 相关的组织病理学幻灯片来自癌症基因组图谱项目,用于训练深度学习模型,并在来自本地注释患者队列的 44 个针吸活检材料(110 张幻灯片)上测试性能。该模型在癌症基因组图谱和本地队列中分别实现了对 PDAC 的经典和基底亚型的平衡准确率为 96.19%和 83.03%。这项研究提供了一种有前途的方法,可以在不增加成本的情况下快速地根据常规苏木精-伊红染色的幻灯片对 PDAC 分子亚型进行分类,从而有可能更有效地对这种疾病进行临床管理。