Suppr超能文献

脑潜在进展:基于个体的三维脑磁共振成像上通过潜在扩散的时空疾病进展

Brain Latent Progression: Individual-based spatiotemporal disease progression on 3D Brain MRIs via latent diffusion.

作者信息

Puglisi Lemuel, Alexander Daniel C, Ravì Daniele

机构信息

Department of Math and Computer Science, University of Catania, Viale Andrea Doria, 6, Catania, Italy.

Centre for Medical Image Computing, University College London, 90 High Holborn, London, UK.

出版信息

Med Image Anal. 2025 Jul 31;106:103734. doi: 10.1016/j.media.2025.103734.

Abstract

The growing availability of longitudinal Magnetic Resonance Imaging (MRI) datasets has facilitated Artificial Intelligence (AI)-driven modeling of disease progression, making it possible to predict future medical scans for individual patients. However, despite significant advancements in AI, current methods continue to face challenges including achieving patient-specific individualization, ensuring spatiotemporal consistency, efficiently utilizing longitudinal data, and managing the substantial memory demands of 3D scans. To address these challenges, we propose Brain Latent Progression (BrLP), a novel spatiotemporal model designed to predict individual-level disease progression in 3D brain MRIs. The key contributions in BrLP are fourfold: (i) it operates in a small latent space, mitigating the computational challenges posed by high-dimensional imaging data; (ii) it explicitly integrates subject metadata to enhance the individualization of predictions; (iii) it incorporates prior knowledge of disease dynamics through an auxiliary model, facilitating the integration of longitudinal data; and (iv) it introduces the Latent Average Stabilization (LAS) algorithm, which (a) enforces spatiotemporal consistency in the predicted progression at inference time and (b) allows us to derive a measure of the uncertainty for the prediction at the global and voxel level. We train and evaluate BrLP on 11,730 T1-weighted (T1w) brain MRIs from 2,805 subjects and validate its generalizability on an external test set comprising 2,257 MRIs from 962 subjects. Our experiments compare BrLP-generated MRI scans with real follow-up MRIs, demonstrating state-of-the-art accuracy compared to existing methods. The code is publicly available at: https://github.com/LemuelPuglisi/BrLP.

摘要

纵向磁共振成像(MRI)数据集的日益丰富,推动了基于人工智能(AI)的疾病进展建模,使得预测个体患者未来的医学扫描成为可能。然而,尽管AI取得了显著进展,但当前方法仍面临诸多挑战,包括实现针对患者的个体化、确保时空一致性、有效利用纵向数据以及应对3D扫描对内存的巨大需求。为应对这些挑战,我们提出了脑潜在进展模型(BrLP),这是一种新颖的时空模型,旨在预测3D脑MRI中的个体水平疾病进展。BrLP的关键贡献有四点:(i)它在一个小的潜在空间中运行,减轻了高维成像数据带来的计算挑战;(ii)它明确整合了受试者元数据,以增强预测的个体化;(iii)它通过一个辅助模型纳入疾病动态的先验知识,便于纵向数据的整合;(iv)它引入了潜在平均稳定(LAS)算法,该算法(a)在推理时强制预测进展中的时空一致性,(b)使我们能够在全局和体素水平上得出预测不确定性的度量。我们使用来自2805名受试者的11730张T1加权(T1w)脑MRI对BrLP进行训练和评估,并在一个包含来自962名受试者的2257张MRI的外部测试集上验证其泛化能力。我们的实验将BrLP生成的MRI扫描与实际随访MRI进行比较,与现有方法相比,展示了其领先的准确性。代码可在以下网址公开获取:https://github.com/LemuelPuglisi/BrLP

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7efb/12381938/084ba9c8be02/nihms-2104156-f0008.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验