Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) Bizkaia Technology Park, Building 801, 48160 Derio, Spain.
Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
J Chem Inf Model. 2024 Sep 23;64(18):7135-7140. doi: 10.1021/acs.jcim.4c01388. Epub 2024 Sep 3.
Artificial intelligence-based protein structure prediction methods such as AlphaFold2 have emerged as powerful tools for characterizing proteins sequence-structure relationship offering unprecedented opportunities for the molecular interpretation of biological and biochemical phenomena. While initially confined to providing a static representation of proteins through their global free-energy minimum, AlphaFold2 has demonstrated the ability to partially sample conformational landscapes, providing insights into protein dynamics, which is fundamental for interpreting and potentially tuning the function of natural and artificial proteins. In this study, we show that targeted column masking of AlphaFold2's multiple sequence alignment enables the characterization and estimation of the population ratio of the two main conformations of engineered green fluorescent proteins with alternative β-strands. The possibility of quickly estimating relative populations through AlphaFold2 predictions is expected to speed-up the computational design of related systems for sensing applications.
基于人工智能的蛋白质结构预测方法,如 AlphaFold2,已经成为描述蛋白质序列-结构关系的强大工具,为生物和生化现象的分子解释提供了前所未有的机会。虽然最初仅限于通过其全局自由能最小值提供蛋白质的静态表示,但 AlphaFold2 已经证明能够部分采样构象景观,深入了解蛋白质动力学,这对于解释和潜在调整天然和人工蛋白质的功能至关重要。在这项研究中,我们表明,对 AlphaFold2 的多重序列比对进行有针对性的列掩蔽,可用于表征和估计具有替代 β-链的工程化绿色荧光蛋白的两种主要构象的群体比例。通过 AlphaFold2 预测快速估计相对群体的可能性,有望加快用于传感应用的相关系统的计算设计。