Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, UK.
Department for Health, University of Bath, Bath, BA2 7AY, UK.
Eur J Nutr. 2024 Dec;63(8):2897-2909. doi: 10.1007/s00394-024-03467-y. Epub 2024 Sep 4.
Following consumption of a meal, circulating glucose concentrations can rise and then fall briefly below the basal/fasting concentrations. This phenomenon is known as reactive hypoglycaemia but to date no researcher has explored potential inter-individual differences in response to meal consumption.
We conducted a secondary analysis of existing data to examine inter-individual variability of reactive hypoglycaemia in response to breakfast consumption.
Using a replicate crossover design, 12 healthy, physically active men (age: 18-30 y, body mass index: 22.1 to 28.0 kg⋅m) completed two identical control (continued overnight fasting) and two breakfast (444 kcal; 60% carbohydrate, 17% protein, 23% fat) conditions in randomised sequences. Blood glucose and lactate concentrations, serum insulin and non-esterified fatty acid concentrations, whole-body energy expenditure, carbohydrate and fat oxidation rates, and appetite ratings were determined before and 2 h after the interventions. Inter-individual differences were explored using Pearson's product-moment correlations between the first and second replicates of the fasting-adjusted breakfast response. Within-participant covariate-adjusted linear mixed models and a random-effects meta-analytical approach were used to quantify participant-by-condition interactions.
Breakfast consumption lowered 2-h blood glucose by 0.44 mmol/L (95%CI: 0.76 to 0.12 mmol/L) and serum NEFA concentrations, whilst increasing blood lactate and serum insulin concentrations (all p < 0.01). Large, positive correlations were observed between the first and second replicates of the fasting-adjusted insulin, lactate, hunger, and satisfaction responses to breakfast consumption (all r > 0.5, 90%CI ranged from 0.03 to 0.91). The participant-by-condition interaction response variability (SD) for serum insulin concentration was 11 pmol/L (95%CI: 5 to 16 pmol/L), which was consistent with the τ-statistic from the random-effects meta-analysis (11.7 pmol/L, 95%CI 7.0 to 22.2 pmol/L) whereas effects were unclear for other outcome variables (e.g., τ-statistic value for glucose: 0 mmol/L, 95%CI 0.0 to 0.5 mmol/L).
Despite observing reactive hypoglycaemia at the group level, we were unable to detect any meaningful inter-individual variability of the reactive hypoglycaemia response to breakfast. There was, however, evidence that 2-h insulin responses to breakfast display meaningful inter-individual variability, which may be explained by relative carbohydrate dose ingested and variation in insulin sensitivity of participants.
进食后,循环葡萄糖浓度会升高,然后短暂降至基础/空腹浓度以下。这种现象被称为反应性低血糖,但迄今为止,没有研究人员探索过对膳食摄入反应的个体间差异。
我们对现有数据进行二次分析,以检查早餐摄入后反应性低血糖的个体间变异性。
使用重复交叉设计,12 名健康、有体力活动的男性(年龄:18-30 岁,体重指数:22.1 至 28.0 kg·m)以随机顺序完成两次相同的对照(持续夜间禁食)和两次早餐(444 千卡;60%碳水化合物、17%蛋白质、23%脂肪)条件。在干预前和干预后 2 小时测定血糖和乳酸浓度、血清胰岛素和非酯化脂肪酸浓度、全身能量消耗、碳水化合物和脂肪氧化率以及食欲评分。使用禁食调整后的早餐反应的第一次和第二次重复之间的皮尔逊积差相关探索个体间差异。使用协变量调整的线性混合模型和随机效应元分析方法来量化参与者与条件的相互作用。
早餐摄入使 2 小时血糖降低 0.44 mmol/L(95%置信区间:0.76 至 0.12 mmol/L)和血清 NEFA 浓度,同时增加血液乳酸和血清胰岛素浓度(均 < 0.01)。禁食调整后的胰岛素、乳酸、饥饿和饱腹感对早餐摄入的第一次和第二次重复之间存在很强的正相关(所有 r > 0.5,90%置信区间范围为 0.03 至 0.91)。血清胰岛素浓度的参与者与条件的相互作用反应变异性(SD)为 11 pmol/L(95%置信区间:5 至 16 pmol/L),与随机效应元分析的 τ-统计量一致(11.7 pmol/L,95%置信区间 7.0 至 22.2 pmol/L),而其他结果变量的影响不明确(例如,血糖的 τ-统计量值:0 mmol/L,95%置信区间 0.0 至 0.5 mmol/L)。
尽管在群体水平上观察到反应性低血糖,但我们未能检测到早餐后反应性低血糖反应的任何有意义的个体间变异性。然而,有证据表明,早餐后 2 小时胰岛素反应存在有意义的个体间变异性,这可能与摄入的相对碳水化合物剂量和参与者的胰岛素敏感性变化有关。