Wu Qianyi, Xu Yihao, Zhao Junxiang, Liu Yongmin, Liu Zhaowei
Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States.
Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States.
Nano Lett. 2024 Sep 18;24(37):11581-11589. doi: 10.1021/acs.nanolett.4c03069. Epub 2024 Sep 5.
Super-resolution fluorescence imaging has offered unprecedented insights and revolutionized our understanding of biology. In particular, localized plasmonic structured illumination microscopy (LPSIM) achieves video-rate super-resolution imaging with ∼50 nm spatial resolution by leveraging subdiffraction-limited nearfield patterns generated by plasmonic nanoantenna arrays. However, the conventional trial-and-error design process for LPSIM arrays is time-consuming and computationally intensive, limiting the exploration of optimal designs. Here, we propose a hybrid inverse design framework combining deep learning and genetic algorithms to refine LPSIM arrays. A population of designs is evaluated using a trained convolutional neural network, and a multiobjective optimization method optimizes them through iteration and evolution. Simulations demonstrate that the optimized LPSIM substrate surpasses traditional substrates, exhibiting higher reconstruction accuracy, robustness against noise, and increased tolerance for fewer measurements. This framework not only proves the efficacy of inverse design for tailoring LPSIM substrates but also opens avenues for exploring new plasmonic nanostructures in imaging applications.
超分辨率荧光成像提供了前所未有的见解,并彻底改变了我们对生物学的理解。特别是,局部表面等离子体结构化照明显微镜(LPSIM)通过利用等离子体纳米天线阵列产生的亚衍射极限近场图案,实现了具有约50纳米空间分辨率的视频速率超分辨率成像。然而,传统的LPSIM阵列试错设计过程既耗时又计算量大,限制了对最优设计的探索。在此,我们提出了一种结合深度学习和遗传算法的混合逆向设计框架,以优化LPSIM阵列。使用经过训练的卷积神经网络对一组设计进行评估,一种多目标优化方法通过迭代和进化对其进行优化。模拟结果表明,优化后的LPSIM基板优于传统基板,具有更高的重建精度、抗噪声鲁棒性以及对较少测量的更高容忍度。该框架不仅证明了逆向设计在定制LPSIM基板方面的有效性,还为在成像应用中探索新的等离子体纳米结构开辟了道路。