Suppr超能文献

规范神经影像库:设计一个全面且人口统计学上多样化的健康对照数据集,以支持创伤性脑损伤的诊断和治疗发展。

Normative Neuroimaging Library: Designing a Comprehensive and Demographically Diverse Dataset of Healthy Controls to Support Traumatic Brain Injury Diagnostic and Therapeutic Development.

作者信息

Gage Allyson T, Stone James R, Wilde Elisabeth A, McCauley Stephen R, Welsh Robert C, Mugler John P, Tustison Nick, Avants Brian, Whitlow Christopher T, Lancashire Lee, Bhatt Seema D, Haas Magali

机构信息

Cohen Veterans Bioscience, New York, New York, USA.

Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA.

出版信息

J Neurotrauma. 2024 Dec;41(23-24):2497-2512. doi: 10.1089/neu.2024.0128. Epub 2024 Sep 5.

Abstract

The past decade has seen impressive advances in neuroimaging, moving from qualitative to quantitative outputs. Available techniques now allow for the inference of microscopic changes occurring in white and gray matter, along with alterations in physiology and function. These existing and emerging techniques hold the potential of providing unprecedented capabilities in achieving a diagnosis and predicting outcomes for traumatic brain injury (TBI) and a variety of other neurological diseases. To see this promise move from the research lab into clinical care, an understanding is needed of what normal data look like for all age ranges, sex, and other demographic and socioeconomic categories. Clinicians can only use the results of imaging scans to support their decision-making if they know how the results for their patient compare with a normative standard. This potential for utilizing magnetic resonance imaging (MRI) in TBI diagnosis motivated the American College of Radiology and Cohen Veterans Bioscience to create a reference database of healthy individuals with neuroimaging, demographic data, and characterization of psychological functioning and neurocognitive data that will serve as a normative resource for clinicians and researchers for development of diagnostics and therapeutics for TBI and other brain disorders. The goal of this article is to introduce the large, well-curated Normative Neuroimaging Library (NNL) to the research community. NNL consists of data collected from ∼1900 healthy participants. The highlights of NNL are (1) data are collected across a diverse population, including civilians, veterans, and active-duty service members with an age range (18-64 years) not well represented in existing datasets; (2) comprehensive structural and functional neuroimaging acquisition with state-of-the-art sequences (including structural, diffusion, and functional MRI; raw scanner data are preserved, allowing higher quality data to be derived in the future; standardized imaging acquisition protocols across sites reflect sequences and parameters often recommended for use with various neurological and psychiatric conditions, including TBI, post-traumatic stress disorder, stroke, neurodegenerative disorders, and neoplastic disease); and (3) the collection of comprehensive demographic details, medical history, and a broad structured clinical assessment, including cognition and psychological scales, relevant to multiple neurological conditions with functional sequelae. Thus, NNL provides a demographically diverse population of healthy individuals who can serve as a comparison group for brain injury study and clinical samples, providing a strong foundation for precision medicine. Use cases include the creation of imaging-derived phenotypes (IDPs), derivation of reference ranges of imaging measures, and use of IDPs as training samples for artificial intelligence-based biomarker development and for normative modeling to help identify injury-induced changes as outliers for precision diagnosis and targeted therapeutic development. On its release, NNL is poised to support the use of advanced imaging in clinician decision support tools, the validation of imaging biomarkers, and the investigation of brain-behavior anomalies, moving the field toward precision medicine.

摘要

在过去十年中,神经成像技术取得了令人瞩目的进展,从定性输出转向了定量输出。现有的技术现在能够推断白质和灰质中发生的微观变化,以及生理和功能的改变。这些现有的和新兴的技术有潜力在诊断创伤性脑损伤(TBI)和各种其他神经系统疾病以及预测其结果方面提供前所未有的能力。为了使这一前景从研究实验室转化为临床护理,需要了解所有年龄范围、性别以及其他人口统计学和社会经济类别的正常数据是什么样的。只有当临床医生知道其患者的扫描结果与正常标准相比如何时,他们才能利用成像扫描结果来支持其决策。在TBI诊断中利用磁共振成像(MRI)的这种潜力促使美国放射学会和科恩退伍军人生物科学公司创建了一个健康个体的参考数据库,该数据库包含神经成像、人口统计学数据、心理功能特征以及神经认知数据,将作为临床医生和研究人员开发TBI和其他脑部疾病诊断和治疗方法的规范资源。本文的目的是向研究界介绍这个精心策划的大型规范神经成像库(NNL)。NNL由从约1900名健康参与者收集的数据组成。NNL的亮点包括:(1)数据是从不同人群中收集的,包括平民、退伍军人和现役军人,年龄范围(18 - 64岁)在现有数据集中代表性不足;(2)使用最先进的序列进行全面的结构和功能神经成像采集(包括结构、扩散和功能MRI;原始扫描数据得以保存,以便未来能获得更高质量的数据;各站点标准化的成像采集协议反映了通常推荐用于各种神经和精神疾病的序列和参数,包括TBI、创伤后应激障碍、中风、神经退行性疾病和肿瘤疾病);(3)收集全面的人口统计学细节、病史以及广泛的结构化临床评估,包括与多种伴有功能后遗症的神经疾病相关的认知和心理量表。因此,NNL提供了一个人口统计学上多样化的健康个体群体,可作为脑损伤研究和临床样本的对照组,为精准医学提供了坚实的基础。其应用案例包括创建成像衍生表型(IDP)、推导成像测量的参考范围,以及将IDP用作基于人工智能的生物标志物开发的训练样本和用于规范建模,以帮助将损伤引起的变化识别为异常值,用于精准诊断和靶向治疗开发。NNL一经发布,就有望支持在临床医生决策支持工具中使用先进成像技术、验证成像生物标志物以及研究脑 - 行为异常,推动该领域向精准医学发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验