Suppr超能文献

ComBat-Predict增强了神经影像模型对新站点的通用性。

ComBat-Predict enhances generalizability of neuroimaging models to new sites.

作者信息

Xin Yao, Gardner Margaret, Tustison Nick, Cook Philip, Gee James, Benitez Andreana, Jensen Jens H, Bethlehem Richard, Seidlitz Jakob, Alexander-Bloch Aaron F, An Chen Andrew

机构信息

Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA.

Brain-Gene-Development Lab, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA.

出版信息

bioRxiv. 2025 Aug 26:2025.08.21.671401. doi: 10.1101/2025.08.21.671401.

Abstract

Neuroimaging is vital in quantifying brain atrophy due to typical aging and due to neurodegenerative diseases. To collect large samples necessary to model lifespan brain development, research consortiums aggregate images acquired across multiple study sites. Previous studies have demonstrated that this multi-site study design can lead to site-related bias, necessitating harmonization of these "site effects". However, current methodologies are unable to generalize to new sites outside the original harmonized sample, limiting translation to new sites or clinical practice. Here, we propose a method called ComBat-Predict (CB-Predict) building upon the ComBat method for site effect adjustment, which extends to data from a new site with smaller sample sizes and unknown site effects. In data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), our proposed method mitigates bias and yields high accuracy in predicting cortical thickness measures when generalizing the model to new data. Furthermore, we demonstrate that our proposed harmonization method can reduce site-related variance in centile scores estimated using data from the Lifespan Brain Chart Consortium (LBCC). Altogether, our results demonstrate that CB-Predict effectively harmonizes new sites and thereby enables effective translation of neuroimaging models to additional samples.

摘要

神经影像学对于量化因正常衰老和神经退行性疾病导致的脑萎缩至关重要。为了收集建立寿命期脑发育模型所需的大样本,研究联盟汇总了在多个研究地点采集的图像。先前的研究表明,这种多地点研究设计可能导致与地点相关的偏差,因此需要对这些“地点效应”进行标准化。然而,目前的方法无法推广到原始标准化样本之外的新地点,限制了向新地点或临床实践的转化。在此,我们提出了一种名为ComBat-Predict(CB-Predict)的方法,该方法基于ComBat方法进行地点效应调整,可扩展到来自样本量较小且地点效应未知的新地点的数据。在阿尔茨海默病神经影像学倡议(ADNI)的数据中,我们提出的方法在将模型推广到新数据时,减轻了偏差并在预测皮质厚度测量方面产生了高精度。此外,我们证明了我们提出的标准化方法可以减少使用来自寿命期脑图谱联盟(LBCC)的数据估计的百分位数分数中的地点相关方差。总之,我们的结果表明,CB-Predict有效地对新地点进行了标准化,从而能够将神经影像学模型有效地转化为其他样本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba83/12407725/9f63134b0f2c/nihpp-2025.08.21.671401v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验