Suppr超能文献

人工智能在风险分层乳腺癌筛查中的成本效益。

Cost-Effectiveness of AI for Risk-Stratified Breast Cancer Screening.

机构信息

School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom.

Nottingham Clinical Trials Unit, University of Nottingham, Nottingham, United Kingdom.

出版信息

JAMA Netw Open. 2024 Sep 3;7(9):e2431715. doi: 10.1001/jamanetworkopen.2024.31715.

Abstract

IMPORTANCE

Previous research has shown good discrimination of short-term risk using an artificial intelligence (AI) risk prediction model (Mirai). However, no studies have been undertaken to evaluate whether this might translate into economic gains.

OBJECTIVE

To assess the cost-effectiveness of incorporating risk-stratified screening using a breast cancer AI model into the United Kingdom (UK) National Breast Cancer Screening Program.

DESIGN, SETTING, AND PARTICIPANTS: This study, conducted from January 1, 2023, to January 31, 2024, involved the development of a decision analytical model to estimate health-related quality of life, cancer survival rates, and costs over the lifetime of the female population eligible for screening. The analysis took a UK payer perspective, and the simulated cohort consisted of women aged 50 to 70 years at screening.

EXPOSURES

Mammography screening at 1 to 6 yearly screening intervals based on breast cancer risk and standard care (screening every 3 years).

MAIN OUTCOMES AND MEASURES

Incremental net monetary benefit based on quality-adjusted life-years (QALYs) and National Health Service (NHS) costs (given in pounds sterling; to convert to US dollars, multiply by 1.28).

RESULTS

Artificial intelligence-based risk-stratified programs were estimated to be cost-saving and increase QALYs compared with the current screening program. A screening schedule of every 6 years for lowest-risk individuals, biannually and triennially for those below and above average risk, respectively, and annually for those at highest risk was estimated to give yearly net monetary benefits within the NHS of approximately £60.4 (US $77.3) million and £85.3 (US $109.2) million, with QALY values set at £20 000 (US $25 600) and £30 000 (US $38 400), respectively. Even in scenarios where decision-makers hesitate to allocate additional NHS resources toward screening, implementing the proposed strategies at a QALY value of £1 (US $1.28) was estimated to generate a yearly monetary benefit of approximately £10.6 (US $13.6) million.

CONCLUSIONS AND RELEVANCE

In this decision analytical model study of integrating risk-stratified screening with a breast cancer AI model into the UK National Breast Cancer Screening Program, risk-stratified screening was likely to be cost-effective, yielding added health benefits at reduced costs. These results are particularly relevant for health care settings where resources are under pressure. New studies to prospectively evaluate AI-guided screening appear warranted.

摘要

重要性

先前的研究表明,使用人工智能(AI)风险预测模型(Mirai)可以很好地区分短期风险。然而,尚未有研究评估这是否可以转化为经济收益。

目的

评估将基于乳腺癌人工智能模型的风险分层筛查纳入英国(UK)国家乳腺癌筛查计划的成本效益。

设计、设置和参与者:这项研究于 2023 年 1 月 1 日至 2024 年 1 月 31 日进行,开发了一个决策分析模型来估计符合筛查条件的女性人群的健康相关生活质量、癌症生存率和终生成本。分析从英国支付者的角度出发,模拟队列由 50 至 70 岁的筛查女性组成。

暴露

根据乳腺癌风险和标准护理(每 3 年筛查一次)进行 1 至 6 年的乳腺 X 线筛查间隔。

主要结果和措施

基于质量调整生命年(QALY)和国民保健服务(NHS)成本的增量净货币效益(以英镑表示;换算成美元,乘以 1.28)。

结果

与当前筛查计划相比,基于人工智能的风险分层计划预计具有成本效益并增加了 QALY。对于风险最低的个体,每 6 年筛查一次,对于风险低于平均水平和高于平均水平的个体,分别每两年和每三年筛查一次,对于风险最高的个体,每年筛查一次,预计 NHS 的年净货币效益约为 6040 万英镑(7730 万美元)和 8530 万英镑(1.092 亿美元),相应的 QALY 值分别设定为 2 万英镑(2.56 万美元)和 3 万英镑(3.84 万美元)。即使在决策者不愿将额外的 NHS 资源分配用于筛查的情况下,在 QALY 值为 1 英镑(1.28 美元)的情况下实施拟议策略,预计每年也将带来约 1060 万英镑(1360 万美元)的货币效益。

结论和相关性

在这项将基于乳腺癌人工智能模型的风险分层筛查纳入英国国家乳腺癌筛查计划的决策分析模型研究中,风险分层筛查可能具有成本效益,在降低成本的同时带来额外的健康益处。这些结果对于资源面临压力的医疗保健环境尤其相关。似乎有必要开展新的前瞻性研究来评估 AI 指导的筛查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3ab/11377997/e49b9d4fd4e5/jamanetwopen-e2431715-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验