Suppr超能文献

电子学习干预和人工智能辅助勾画技能在放射治疗中的潜力:ELAISA 研究。

Potential of E-Learning Interventions and Artificial Intelligence-Assisted Contouring Skills in Radiotherapy: The ELAISA Study.

机构信息

Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark.

International Atomic Energy Agency, Vienna, Austria.

出版信息

JCO Glob Oncol. 2024 Aug;10:e2400173. doi: 10.1200/GO.24.00173.

Abstract

PURPOSE

Most research on artificial intelligence-based auto-contouring as template (AI-assisted contouring) for organs-at-risk (OARs) stem from high-income countries. The effect and safety are, however, likely to depend on local factors. This study aimed to investigate the effects of AI-assisted contouring and teaching on contouring time and contour quality among radiation oncologists (ROs) working in low- and middle-income countries (LMICs).

MATERIALS AND METHODS

Ninety-seven ROs were randomly assigned to either manual or AI-assisted contouring of eight OARs for two head-and-neck cancer cases with an in-between teaching session on contouring guidelines. Thereby, the effect of teaching (yes/no) and AI-assisted contouring (yes/no) was quantified. Second, ROs completed short-term and long-term follow-up cases all using AI assistance. Contour quality was quantified with Dice Similarity Coefficient (DSC) between ROs' contours and expert consensus contours. Groups were compared using absolute differences in medians with 95% CIs.

RESULTS

AI-assisted contouring without previous teaching increased absolute DSC for optic nerve (by 0.05 [0.01; 0.10]), oral cavity (0.10 [0.06; 0.13]), parotid (0.07 [0.05; 0.12]), spinal cord (0.04 [0.01; 0.06]), and mandible (0.02 [0.01; 0.03]). Contouring time decreased for brain stem (-1.41 [-2.44; -0.25]), mandible (-6.60 [-8.09; -3.35]), optic nerve (-0.19 [-0.47; -0.02]), parotid (-1.80 [-2.66; -0.32]), and thyroid (-1.03 [-2.18; -0.05]). Without AI-assisted contouring, teaching increased DSC for oral cavity (0.05 [0.01; 0.09]) and thyroid (0.04 [0.02; 0.07]), and contouring time increased for mandible (2.36 [-0.51; 5.14]), oral cavity (1.42 [-0.08; 4.14]), and thyroid (1.60 [-0.04; 2.22]).

CONCLUSION

The study suggested that AI-assisted contouring is safe and beneficial to ROs working in LMICs. Prospective clinical trials on AI-assisted contouring should, however, be conducted upon clinical implementation to confirm the effects.

摘要

目的

大多数基于人工智能的自动勾画(AI 辅助勾画)器官风险(OARs)的研究都来自高收入国家。然而,其效果和安全性可能取决于当地因素。本研究旨在调查在中低收入国家(LMICs)工作的放射肿瘤学家(ROs)使用 AI 辅助勾画和教学对勾画时间和勾画质量的影响。

材料和方法

97 名 ROs 被随机分配到手动或 AI 辅助勾画 8 个头颈部癌症病例的 OARs,中间有一次关于勾画指南的教学课程。因此,量化了教学(是/否)和 AI 辅助勾画(是/否)的效果。其次,ROs 使用 AI 辅助在短期和长期随访病例中完成勾画。使用 ROs 轮廓与专家共识轮廓之间的 Dice 相似系数(DSC)来量化勾画质量。使用中位数的绝对差异和 95%置信区间(CI)来比较组间差异。

结果

没有预先教学的 AI 辅助勾画提高了视神经(增加 0.05 [0.01;0.10])、口腔(增加 0.10 [0.06;0.13])、腮腺(增加 0.07 [0.05;0.12])、脊髓(增加 0.04 [0.01;0.06])和下颌骨(增加 0.02 [0.01;0.03])的 DSC。脑干(减少 1.41 [2.44;0.25])、下颌骨(减少 6.60 [8.09;3.35])、视神经(减少 0.19 [0.47;0.02])、腮腺(减少 1.80 [2.66;0.32])和甲状腺(减少 1.03 [2.18;0.05])的勾画时间减少。没有 AI 辅助勾画,教学提高了口腔(增加 0.05 [0.01;0.09])和甲状腺(增加 0.04 [0.02;0.07])的 DSC,下颌骨(增加 2.36 [0.51;5.14])、口腔(增加 1.42 [0.08;4.14])和甲状腺(增加 1.60 [0.04;2.22])的勾画时间增加。

结论

该研究表明,AI 辅助勾画对于在 LMICs 工作的 ROs 是安全且有益的。然而,应该在临床实施后进行 AI 辅助勾画的前瞻性临床试验,以确认效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e74/11404336/5b6a3fa7f04d/go-10-e2400173-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验