Yue Chengguang, Huang Zhenqiao, Wang Wen-Lin, Gao Zi'Ang, Lin Haicheng, Liu Junwei, Chang Kai
Beijing Academy of Quantum Information Sciences, Beijing 100193, China.
Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
ACS Nano. 2024 Sep 17;18(37):25478-25488. doi: 10.1021/acsnano.4c04789. Epub 2024 Sep 5.
SnSe, an environmental-friendly group-IV monochalcogenide semiconductor, demonstrates outstanding performance in various applications ranging from thermoelectric devices to solar energy harvesting. Its ultrathin films show promise in the fabrication of ferroelectric nonvolatile devices. However, the microscopic identification and manipulation of point defects in ultrathin SnSe single crystalline films, which significantly impact their electronic structure, have been inadequately studied. This study presents a comprehensive investigation of point defects in monolayer SnSe films grown via molecular beam epitaxy. By combining scanning tunneling microscopy (STM) characterization with first-principles calculations, we identified four types of atomic/molecular vacancies, four types of atomic substitutions, and three types of extrinsic defects. Notably, we have demonstrated the ability to convert a substitutional defect into a vacancy and to reposition an adsorbate by manipulating a single atom or molecule using an STM tip. We have also analyzed the local atomic displacement induced by the vacancies. This work provides a solid foundation for engineering the electronic structure of future SnSe-based nanodevices.
SnSe是一种环境友好型的IV族单硫属化物半导体,在从热电器件到太阳能收集等各种应用中表现出卓越性能。其超薄膜在铁电非易失性器件制造方面展现出前景。然而,对于超薄SnSe单晶膜中点缺陷的微观识别与操控研究不足,而这些点缺陷会显著影响其电子结构。本研究对通过分子束外延生长的单层SnSe膜中的点缺陷进行了全面研究。通过将扫描隧道显微镜(STM)表征与第一性原理计算相结合,我们识别出了四种类型的原子/分子空位、四种类型的原子替代以及三种类型的外在缺陷。值得注意的是,我们展示了利用STM针尖操控单个原子或分子,将替代缺陷转化为空位以及重新定位吸附质的能力。我们还分析了由空位引起的局部原子位移。这项工作为设计未来基于SnSe的纳米器件的电子结构奠定了坚实基础。