College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
Arontier Co., Seoul, Republic of Korea.
Sci Rep. 2024 Oct 24;14(1):25167. doi: 10.1038/s41598-024-75400-6.
Structure-based virtual screening (SBVS) is a crucial computational approach in drug discovery, but its performance is sensitive to structural variations. Kinases, which are major drug targets, exemplify this challenge due to active site conformational changes caused by different inhibitor types. Most experimentally determined kinase structures have the DFGin state, potentially biasing SBVS towards type I inhibitors and limiting the discovery of diverse scaffolds. We introduce a multi-state modeling (MSM) protocol for AlphaFold2 (AF2) kinase structures using state-specific templates to address these challenges. Our comprehensive benchmarks evaluate predicted model qualities, binding pose prediction accuracy, and hit compound identification through ensemble SBVS. Results demonstrate that MSM models exhibit comparable or improved structural accuracy compared to standard AF2 models, enhancing pose prediction accuracy and effectively capturing kinase-ligand interactions. In virtual screening experiments, our MSM approach consistently outperforms standard AF2 and AF3 modeling, particularly in identifying diverse hit compounds. This study highlights the potential of MSM in broadening kinase inhibitor discovery by facilitating the identification of chemically diverse inhibitors, offering a promising solution to the structural bias problem in kinase-targeted drug discovery.
基于结构的虚拟筛选 (SBVS) 是药物发现中至关重要的计算方法,但它的性能对结构变化敏感。激酶是主要的药物靶点,由于不同抑制剂类型引起的活性位点构象变化,这一挑战尤为明显。大多数通过实验确定的激酶结构都具有 DFGin 状态,这可能会使 SBVS 偏向于 I 型抑制剂,并限制多样化骨架的发现。我们引入了一种多态建模 (MSM) 方案,使用特定状态的模板对 AlphaFold2 (AF2) 激酶结构进行建模,以解决这些挑战。我们的全面基准测试评估了通过集合 SBVS 预测模型的质量、结合构象预测准确性和命中化合物识别。结果表明,MSM 模型与标准的 AF2 模型相比具有相当或更高的结构准确性,提高了构象预测准确性并有效地捕捉了激酶 - 配体相互作用。在虚拟筛选实验中,我们的 MSM 方法始终优于标准的 AF2 和 AF3 建模,特别是在识别多样化的命中化合物方面。这项研究强调了 MSM 在拓宽激酶抑制剂发现方面的潜力,通过促进识别化学多样性的抑制剂,为激酶靶向药物发现中的结构偏差问题提供了有前途的解决方案。