Suppr超能文献

精度与泛化能力兼顾:通过预训练的带有全局平均池化和超参数调优的 DenseNet 提升脑肿瘤分类。

Precision meets generalization: Enhancing brain tumor classification via pretrained DenseNet with global average pooling and hyperparameter tuning.

机构信息

Department of Computer Systems Engineering, University of Engineering and Technology(UET), Peshawar, Khyber Pakhtunkhwa, Pakistan.

National Center for Big Data and Cloud Computing (NCBC), University of Engineering and Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan.

出版信息

PLoS One. 2024 Sep 6;19(9):e0307825. doi: 10.1371/journal.pone.0307825. eCollection 2024.

Abstract

Brain tumors pose significant global health concerns due to their high mortality rates and limited treatment options. These tumors, arising from abnormal cell growth within the brain, exhibits various sizes and shapes, making their manual detection from magnetic resonance imaging (MRI) scans a subjective and challenging task for healthcare professionals, hence necessitating automated solutions. This study investigates the potential of deep learning, specifically the DenseNet architecture, to automate brain tumor classification, aiming to enhance accuracy and generalizability for clinical applications. We utilized the Figshare brain tumor dataset, comprising 3,064 T1-weighted contrast-enhanced MRI images from 233 patients with three prevalent tumor types: meningioma, glioma, and pituitary tumor. Four pre-trained deep learning models-ResNet, EfficientNet, MobileNet, and DenseNet-were evaluated using transfer learning from ImageNet. DenseNet achieved the highest test set accuracy of 96%, outperforming ResNet (91%), EfficientNet (91%), and MobileNet (93%). Therefore, we focused on improving the performance of the DenseNet, while considering it as base model. To enhance the generalizability of the base DenseNet model, we implemented a fine-tuning approach with regularization techniques, including data augmentation, dropout, batch normalization, and global average pooling, coupled with hyperparameter optimization. This enhanced DenseNet model achieved an accuracy of 97.1%. Our findings demonstrate the effectiveness of DenseNet with transfer learning and fine-tuning for brain tumor classification, highlighting its potential to improve diagnostic accuracy and reliability in clinical settings.

摘要

脑肿瘤因其高死亡率和有限的治疗选择而成为全球健康的重大关注点。这些肿瘤起源于大脑内异常细胞的生长,表现出各种大小和形状,使得医疗保健专业人员从磁共振成像 (MRI) 扫描中手动检测它们成为一项主观而具有挑战性的任务,因此需要自动化解决方案。本研究探讨了深度学习,特别是 DenseNet 架构,在自动化脑肿瘤分类中的潜力,旨在提高临床应用的准确性和通用性。我们使用了来自 233 名患者的 3064 个 T1 加权对比增强 MRI 图像的 Figshare 脑肿瘤数据集,这些患者患有三种常见的肿瘤类型:脑膜瘤、神经胶质瘤和垂体瘤。我们使用从 ImageNet 进行的迁移学习评估了四个预先训练的深度学习模型——ResNet、EfficientNet、MobileNet 和 DenseNet。DenseNet 在测试集上达到了 96%的最高准确率,优于 ResNet(91%)、EfficientNet(91%)和 MobileNet(93%)。因此,我们专注于改进 DenseNet 的性能,同时将其作为基础模型。为了提高基础 DenseNet 模型的通用性,我们使用了正则化技术(包括数据增强、随机失活、批量归一化和全局平均池化)进行微调,并结合了超参数优化。改进后的 DenseNet 模型达到了 97.1%的准确率。我们的研究结果表明,DenseNet 结合迁移学习和微调在脑肿瘤分类方面非常有效,突出了其在提高临床环境下诊断准确性和可靠性方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f061/11379197/7ddbfb10396c/pone.0307825.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验