Suppr超能文献

一种利用呼吸机参数成功预测心脏重症监护病房患者快速撤机方案的简单算法。

A Simple Algorithm Using Ventilator Parameters to Predict Successfully Rapid Weaning Program in Cardiac Intensive Care Unit Patients.

作者信息

Chen Wei-Teing, Huang Hai-Lun, Ko Pi-Shao, Su Wen, Kao Chung-Cheng, Su Sui-Lung

机构信息

Division of Thoracic Medicine, Department of Medicine, Cheng Hsin General Hospital, Tri-Service General Hospital, National Defense Medical Center, Taipei 112401, Taiwan.

School of Public Health, National Defense Medical Center, Taipei 114201, Taiwan.

出版信息

J Pers Med. 2022 Mar 21;12(3):501. doi: 10.3390/jpm12030501.

Abstract

BACKGROUND

Ventilator weaning is one of the most significant challenges in the intensive care unit (ICU). Approximately 30% of patients fail to wean, resulting in prolonged use of ventilators and increased mortality. There are numerous high-performance prediction models available today, but they require a large number of parameters to predict and are thus impractical in clinical practice.

OBJECTIVES

This study aims to create an artificial intelligence (AI) model for predicting weaning time and to identify the most simplified key predictors that will allow the model to achieve adequate accuracy with as few parameters as possible.

METHODS

This is a retrospective study of to-be-weaned patients ( = 1439) hospitalized in the cardiac ICU of Cheng Hsin General Hospital's Department of Cardiac Surgery from November 2018 to August 2020. The patients were divided into two groups based on whether they could be weaned within 24 h (i.e., "patients weaned within 24 h" ( = 1042) and "patients not weaned within 24 h" ( = 397)). Twenty-eight variables were collected including demographic characteristics, arterial blood gas readings, and ventilation set parameters. We created a prediction model using logistic regression and compared it to other machine learning techniques such as decision tree, random forest, support vector machine (SVM), extreme gradient boosting, and artificial neural network. Forward, backward, and stepwise selection methods were used to identify significant variables, and the receiver operating characteristic curve was used to assess the accuracy of each AI model.

RESULTS

The SVM [receiver operating characteristic curve (ROC-AUC) = 88%], logistic regression (ROC-AUC = 86%), and XGBoost (ROC-AUC = 85%) models outperformed the other five machine learning models in predicting weaning time. The accuracies in predicting patient weaning within 24 h using seven variables (i.e., expiratory minute ventilation, expiratory tidal volume, ventilation rate set, heart rate, peak pressure, pH, and age) were close to those using 28 variables.

CONCLUSIONS

The model developed in this research successfully predicted the weaning success of ICU patients using a few and easily accessible parameters such as age. Therefore, it can be used in clinical practice to identify difficult-to-wean patients to improve their treatment.

摘要

背景

呼吸机撤机是重症监护病房(ICU)面临的最重大挑战之一。约30%的患者撤机失败,导致呼吸机使用时间延长和死亡率增加。如今有许多高性能预测模型,但它们需要大量参数进行预测,因此在临床实践中不实用。

目的

本研究旨在创建一个用于预测撤机时间的人工智能(AI)模型,并确定最简化的关键预测因素,使模型能用尽可能少的参数达到足够的准确性。

方法

这是一项对2018年11月至2020年8月在成信总医院心脏外科心脏ICU住院的拟撤机患者(n = 1439)的回顾性研究。根据患者是否能在24小时内撤机,将患者分为两组(即“24小时内撤机的患者”(n = 1042)和“24小时内未撤机的患者”(n = 397))。收集了28个变量,包括人口统计学特征、动脉血气读数和通气设置参数。我们使用逻辑回归创建了一个预测模型,并将其与其他机器学习技术(如决策树、随机森林、支持向量机(SVM)、极端梯度提升和人工神经网络)进行比较。采用向前、向后和逐步选择方法确定显著变量,并使用受试者工作特征曲线评估每个AI模型的准确性。

结果

在预测撤机时间方面,支持向量机模型[受试者工作特征曲线(ROC-AUC)= 88%]、逻辑回归模型(ROC-AUC = 86%)和极端梯度提升模型(ROC-AUC = 85%)优于其他五个机器学习模型。使用七个变量(即呼气分钟通气量、呼气潮气量、设置的通气频率、心率、峰值压力、pH值和年龄)预测患者24小时内撤机的准确性与使用28个变量时相近。

结论

本研究开发的模型使用年龄等少量且易于获取的参数成功预测了ICU患者的撤机成功情况。因此,它可用于临床实践中识别难以撤机的患者以改善其治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15e4/8950402/d0190ae8879f/jpm-12-00501-g001.jpg

相似文献

5
[Construction of a predictive model for in-hospital mortality of sepsis patients in intensive care unit based on machine learning].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2023 Jul;35(7):696-701. doi: 10.3760/cma.j.cn121430-20221219-01104.
6
Improvement in the Prediction of Ventilator Weaning Outcomes by an Artificial Neural Network in a Medical ICU.
Respir Care. 2015 Nov;60(11):1560-9. doi: 10.4187/respcare.03648. Epub 2015 Sep 1.
10
Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
Clin Orthop Relat Res. 2020 Jul;478(7):0-1618. doi: 10.1097/CORR.0000000000001251.

引用本文的文献

2
Role of artificial intelligence in enhancing mechanical ventilation - A peek into the future.
Indian J Anaesth. 2025 Jul;69(7):722-728. doi: 10.4103/ija.ija_995_24. Epub 2025 Jun 12.
4
Enhancing machine learning performance in cardiac surgery ICU: Hyperparameter optimization with metaheuristic algorithm.
PLoS One. 2025 Feb 10;20(2):e0311250. doi: 10.1371/journal.pone.0311250. eCollection 2025.
6
Development and validation of a clinical prediction model for early ventilator weaning in post-cardiac surgery.
Heliyon. 2024 Mar 20;10(7):e28141. doi: 10.1016/j.heliyon.2024.e28141. eCollection 2024 Apr 15.
7
Artificial intelligence for clinical decision support for monitoring patients in cardiovascular ICUs: A systematic review.
Front Med (Lausanne). 2023 Mar 31;10:1109411. doi: 10.3389/fmed.2023.1109411. eCollection 2023.

本文引用的文献

2
A Machine Learning decision-making tool for extubation in Intensive Care Unit patients.
Comput Methods Programs Biomed. 2021 Mar;200:105869. doi: 10.1016/j.cmpb.2020.105869. Epub 2020 Nov 24.
3
Numerical Parameter Space Compression and Its Application to Biophysical Models.
Biophys J. 2020 Mar 24;118(6):1455-1465. doi: 10.1016/j.bpj.2020.01.023. Epub 2020 Jan 29.
4
Predicting weaning difficulty for planned extubation patients with an artificial neural network.
Medicine (Baltimore). 2019 Oct;98(40):e17392. doi: 10.1097/MD.0000000000017392.
6
Machine learning in medicine: a practical introduction.
BMC Med Res Methodol. 2019 Mar 19;19(1):64. doi: 10.1186/s12874-019-0681-4.
8
Can Creatinine Height Index Predict Weaning and Survival Outcomes in Patients on Prolonged Mechanical Ventilation After Critical Illness?
J Intensive Care Med. 2018 Feb;33(2):104-110. doi: 10.1177/0885066616648133. Epub 2016 May 13.
9
Maximum inspiratory pressure and rapid shallow breathing index as predictors of successful ventilator weaning.
J Phys Ther Sci. 2015 Dec;27(12):3723-7. doi: 10.1589/jpts.27.3723. Epub 2015 Dec 28.
10
Improvement in the Prediction of Ventilator Weaning Outcomes by an Artificial Neural Network in a Medical ICU.
Respir Care. 2015 Nov;60(11):1560-9. doi: 10.4187/respcare.03648. Epub 2015 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验