Suppr超能文献

在利用水电解产生的氢气的连续闭环流动系统中,用于黄素依赖性烯还原的氢驱动生物催化。

H-driven biocatalysis for flavin-dependent ene-reduction in a continuous closed-loop flow system utilizing H from water electrolysis.

作者信息

Lim Guiyeoul, Calabrese Donato, Wolder Allison, Cordero Paul R F, Rother Dörte, Mulks Florian F, Paul Caroline E, Lauterbach Lars

机构信息

Institute of Applied Microbiology-iAMB RWTH Aachen University, Aachen, Germany.

Biocatalysis Section, Department Biotechnology, Delft University of Technology, Delft, The Netherlands.

出版信息

Commun Chem. 2024 Sep 7;7(1):200. doi: 10.1038/s42004-024-01288-y.

Abstract

Despite the increasing demand for efficient and sustainable chemical processes, the development of scalable systems using biocatalysis for fine chemical production remains a significant challenge. We have developed a scalable flow system using immobilized enzymes to facilitate flavin-dependent biocatalysis, targeting as a proof-of-concept asymmetric alkene reduction. The system integrates a flavin-dependent Old Yellow Enzyme (OYE) and a soluble hydrogenase to enable H-driven regeneration of the OYE cofactor FMNH. Molecular hydrogen was produced by water electrolysis using a proton exchange membrane (PEM) electrolyzer and introduced into the flow system via a designed gas membrane addition module at a high diffusion rate. The flow system shows remarkable stability and reusability, consistently achieving >99% conversion of ketoisophorone to levodione. It also demonstrates versatility and selectivity in reducing various cyclic enones and can be extended to further flavin-based biocatalytic approaches and gas-dependent reactions. This electro-driven continuous flow system, therefore, has significant potential for advancing sustainable processes in fine chemical synthesis.

摘要

尽管对高效且可持续的化学过程的需求不断增加,但开发用于精细化学品生产的可扩展生物催化系统仍然是一项重大挑战。我们开发了一种使用固定化酶的可扩展流动系统,以促进黄素依赖性生物催化,作为概念验证的不对称烯烃还原的目标。该系统集成了黄素依赖性老黄色酶(OYE)和可溶性氢化酶,以实现OYE辅因子FMNH的H驱动再生。使用质子交换膜(PEM)电解槽通过水电解产生分子氢,并通过设计的气膜添加模块以高扩散速率引入流动系统。该流动系统显示出显著的稳定性和可重复使用性,始终实现酮异佛尔酮到左旋二酮的转化率>99%。它还在还原各种环状烯酮方面表现出通用性和选择性,并且可以扩展到进一步基于黄素的生物催化方法和气体依赖性反应。因此,这种电驱动的连续流动系统在推进精细化学合成中的可持续过程方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c69/11380674/76ae3120fac3/42004_2024_1288_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验