Suppr超能文献

多层石墨烯/MoS2异质结构晶体管中的电可调谐与负肖特基势垒

Electrically Tunable and Negative Schottky Barriers in Multi-layered Graphene/MoS2 Heterostructured Transistors.

作者信息

Qiu Dongri, Kim Eun Kyu

机构信息

Quantum-Function Research Laboratory and Department of Physics, Hanyang University, Seoul 133-791, South Korea.

出版信息

Sci Rep. 2015 Sep 3;5:13743. doi: 10.1038/srep13743.

Abstract

We fabricated multi-layered graphene/MoS2 heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2 onto Au metal pads on a SiO2/Si substrate via a contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2 junction devices for systematic comparison. A previous work has demonstrated the existence of a positive Schottky barrier height (SBH) in the metal/MoS2 system. However, analysis of the SBH indicates that the contacts of the multi-layered graphene/MoS2 have tunable negative barriers in the range of 300 to -46 meV as a function of gate voltage. It is hypothesized that this tunable SBH is responsible for the modulation of the work function of the thick graphene in these devices. Despite the large number of graphene layers, it is possible to form ohmic contacts, which will provide new opportunities for the engineering of highly efficient contacts in flexible electronics and photonics.

摘要

我们通过一种无污染的干法转移技术,将机械剥离的块状石墨和单晶2H-MoS₂放置在SiO₂/Si衬底上的金金属焊盘上,制备了多层石墨烯/MoS₂异质结构器件。我们还研究了Au/MoS₂结器件的电输运特性,以便进行系统比较。先前的一项工作已经证明了金属/MoS₂系统中存在正的肖特基势垒高度(SBH)。然而,对SBH的分析表明,多层石墨烯/MoS₂的接触具有可调的负势垒,其范围在300至-46 meV之间,这是栅极电压的函数。据推测,这种可调的SBH负责调制这些器件中厚石墨烯的功函数。尽管石墨烯层数很多,但仍有可能形成欧姆接触,这将为柔性电子学和光子学中高效接触的工程设计提供新的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe71/4558713/4ea25386680e/srep13743-f1.jpg

相似文献

3
High-Performance Two-Dimensional Schottky Diodes Utilizing Chemical Vapour Deposition-Grown Graphene-MoS Heterojunctions.
ACS Appl Mater Interfaces. 2018 Oct 31;10(43):37258-37266. doi: 10.1021/acsami.8b13507. Epub 2018 Oct 22.
5
Controllable Schottky barriers between MoS2 and permalloy.
Sci Rep. 2014 Nov 5;4:6928. doi: 10.1038/srep06928.
6
Junction-Structure-Dependent Schottky Barrier Inhomogeneity and Device Ideality of Monolayer MoS Field-Effect Transistors.
ACS Appl Mater Interfaces. 2017 Mar 29;9(12):11240-11246. doi: 10.1021/acsami.6b16692. Epub 2017 Mar 20.
7
Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes.
Small. 2013 Oct 11;9(19):3295-300. doi: 10.1002/smll.201300134. Epub 2013 Feb 18.
8
Graphene oxide as a promising hole injection layer for MoS₂-based electronic devices.
ACS Nano. 2014 Nov 25;8(11):11432-9. doi: 10.1021/nn504507u. Epub 2014 Nov 6.
9
Carrier Transport Properties of MoS Asymmetric Gas Sensor Under Charge Transfer-Based Barrier Modulation.
Nanoscale Res Lett. 2018 Sep 4;13(1):265. doi: 10.1186/s11671-018-2652-9.
10
The modulation of Schottky barriers of metal-MoS2 contacts via BN-MoS2 heterostructures.
Phys Chem Chem Phys. 2016 Jun 22;18(25):16882-9. doi: 10.1039/c6cp02132h.

引用本文的文献

1
Tuning the Schottky barrier height in single- and bi-layer graphene-inserted MoS/metal contacts.
Sci Rep. 2024 Sep 8;14(1):20905. doi: 10.1038/s41598-024-67150-2.
2
Effect of strain on the electronic structure and optical properties of Cr-doped monolayer MoS.
J Mol Model. 2023 Oct 3;29(11):331. doi: 10.1007/s00894-023-05735-w.
3
Interface contact and modulated electronic properties by in-plain strains in a graphene-MoS heterostructure.
RSC Adv. 2023 Jan 19;13(5):2903-2911. doi: 10.1039/d2ra07949f. eCollection 2023 Jan 18.
4
Composition Dependent Electrical Transport in Si Ge Nanosheets with Monolithic Single-Elementary Al Contacts.
Small. 2022 Nov;18(44):e2204178. doi: 10.1002/smll.202204178. Epub 2022 Sep 22.
5
Efficient ReSe Photodetectors with CVD Single-Crystal Graphene Contacts.
Nanomaterials (Basel). 2021 Jun 23;11(7):1650. doi: 10.3390/nano11071650.
6
Controlling Injection Barriers for Ambipolar 2D Semiconductors via Quasi-van der Waals Contacts.
Adv Sci (Weinh). 2019 Apr 19;6(11):1801841. doi: 10.1002/advs.201801841. eCollection 2019 Jun 5.
7
Charge carrier injection and transport engineering in two-dimensional transition metal dichalcogenides.
Chem Sci. 2018 Sep 24;9(40):7727-7745. doi: 10.1039/c8sc02609b. eCollection 2018 Oct 28.
8
Locally Gated SnS/hBN Thin Film Transistors with a Broadband Photoresponse.
Sci Rep. 2018 Jul 12;8(1):10585. doi: 10.1038/s41598-018-28765-4.

本文引用的文献

1
Toward barrier free contact to molybdenum disulfide using graphene electrodes.
Nano Lett. 2015 May 13;15(5):3030-4. doi: 10.1021/nl504957p. Epub 2015 Apr 22.
2
Controllable Schottky barriers between MoS2 and permalloy.
Sci Rep. 2014 Nov 5;4:6928. doi: 10.1038/srep06928.
3
Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics.
Nano Lett. 2014 Jun 11;14(6):3055-63. doi: 10.1021/nl404795z. Epub 2014 May 14.
4
Effect of contaminations and surface preparation on the work function of single layer MoS2.
Beilstein J Nanotechnol. 2014 Mar 13;5:291-7. doi: 10.3762/bjnano.5.32. eCollection 2014.
5
Few-layer MoS2: a promising layered semiconductor.
ACS Nano. 2014 May 27;8(5):4074-99. doi: 10.1021/nn405938z. Epub 2014 Apr 14.
6
MoS₂ P-type transistors and diodes enabled by high work function MoOx contacts.
Nano Lett. 2014 Mar 12;14(3):1337-42. doi: 10.1021/nl4043505. Epub 2014 Feb 27.
7
High-performance molybdenum disulfide field-effect transistors with spin tunnel contacts.
ACS Nano. 2014 Jan 28;8(1):476-82. doi: 10.1021/nn404961e. Epub 2014 Jan 8.
8
Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices.
Nat Nanotechnol. 2013 Nov;8(11):826-30. doi: 10.1038/nnano.2013.206. Epub 2013 Oct 20.
10
Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures.
ACS Nano. 2013 Sep 24;7(9):7931-6. doi: 10.1021/nn402954e. Epub 2013 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验