Ji Yan, Deng Zhongxun
School of Energy Engineering, Yulin University, Yulin, 719000, China.
Sci Rep. 2025 Jul 28;15(1):27418. doi: 10.1038/s41598-025-12618-y.
We conducted a thorough investigation using first - principle calculations, focusing on nonmetallic dopants, including Be, B, C, N, O, and F doped MoS/Au contacts. Our analysis revolved around critical parameters, including adhesion strength, charge transfer across the interface, tunnel barrier, and Schottky barrier height (SBH). our study demonstrated that substitutionally doped interfaces can improve contact properties while maintaining an enhanced adhesion strength. Specifically, The tunneling probability T is high to 37.81% and the negative n-type SBH is formed for F doped MoS/Au contact. This finding marks a departure from existing methods and offers a promising avenue for inducing Ohmic contact and addressing contact resistance challenges in TMDs.
我们使用第一性原理计算进行了全面研究,重点关注非金属掺杂剂,包括铍(Be)、硼(B)、碳(C)、氮(N)、氧(O)和氟(F)掺杂的二硫化钼/金(MoS/Au)接触。我们的分析围绕着关键参数展开,包括粘附强度、界面电荷转移、隧道势垒和肖特基势垒高度(SBH)。我们的研究表明,替代掺杂界面可以改善接触性能,同时保持增强的粘附强度。具体而言,对于氟掺杂的MoS/Au接触,隧道概率T高达37.81%,并形成了负的n型肖特基势垒。这一发现与现有方法不同,为诱导欧姆接触和解决过渡金属二卤化物(TMDs)中的接触电阻挑战提供了一条有前景的途径。