Pacific Community, Noumea, 98848, New Caledonia.
Australian National Centre for Ocean Resources and Security, University of Wollongong, Wollongong, 2522, Australia.
Sci Rep. 2024 Sep 8;14(1):20915. doi: 10.1038/s41598-024-71763-y.
This paper presents the design and development of a coastal fisheries monitoring system that harnesses artificial intelligence technologies. Application of the system across the Pacific region promises to revolutionize coastal fisheries management. The program is built on a centralized, cloud-based monitoring system to automate data extraction and analysis processes. The system leverages YoloV4, OpenCV, and ResNet101 to extract information from images of fish and invertebrates collected as part of in-country monitoring programs overseen by national fisheries authorities. As of December 2023, the system has facilitated automated identification of over six hundred nearshore finfish species, and automated length and weight measurements of more than 80,000 specimens across the Pacific. The system integrates other key fisheries monitoring data such as catch rates, fishing locations and habitats, volumes, pricing, and market characteristics. The collection of these metrics supports much needed rapid fishery assessments. The system's co-development with national fisheries authorities and the geographic extent of its application enables capacity development and broader local inclusion of fishing communities in fisheries management. In doing so, the system empowers fishers to work with fisheries authorities to enable data-informed decision-making for more effective adaptive fisheries management. The system overcomes historically entrenched technical and financial barriers in fisheries management in many Pacific island communities.
本文介绍了一个利用人工智能技术的沿海渔业监测系统的设计与开发。该系统在太平洋地区的应用有望彻底改变沿海渔业管理。该计划建立在一个集中的、基于云的监测系统之上,以自动化数据提取和分析过程。该系统利用 YoloV4、OpenCV 和 ResNet101 从国家渔业当局监督的国内监测计划中收集的鱼类和无脊椎动物图像中提取信息。截至 2023 年 12 月,该系统已经实现了对超过 600 种近岸鱼类物种的自动识别,以及对超过 8 万只标本的自动长度和重量测量。该系统集成了其他关键渔业监测数据,如捕捞率、捕捞地点和栖息地、数量、价格和市场特征。这些指标的收集支持急需的快速渔业评估。该系统与国家渔业当局的共同开发以及其应用的地理范围使能力建设和更广泛的当地渔业社区参与渔业管理成为可能。通过这样做,该系统使渔民能够与渔业当局合作,为更有效的适应性渔业管理做出数据驱动的决策。该系统克服了太平洋岛屿社区渔业管理中长期存在的技术和财务障碍。