Canada's Michael Smith Genome Sciences Centre, 570 W 7th Ave, Vancouver, British Columbia, V5Z 4S6, Canada.
Cancer Genetics and Genomics Laboratory at BC Cancer Agency, 600 W 10th Ave #3305, Vancouver, British Columbia, V5Z 4E6, Canada.
Brief Bioinform. 2024 Jul 25;25(5). doi: 10.1093/bib/bbae442.
Accurate assessment of fragment abundance within a genome is crucial in clinical genomics applications such as the analysis of copy number variation (CNV). However, this task is often hindered by biased coverage in regions with varying guanine-cytosine (GC) content. These biases are particularly exacerbated in hybridization capture sequencing due to GC effects on probe hybridization and polymerase chain reaction (PCR) amplification efficiency. Such GC content-associated variations can exert a negative impact on the fidelity of CNV calling within hybridization capture panels. In this report, we present panelGC, a novel metric, to quantify and monitor GC biases in hybridization capture sequencing data. We establish the efficacy of panelGC, demonstrating its proficiency in identifying and flagging potential procedural anomalies, even in situations where instrument and experimental monitoring data may not be readily accessible. Validation using real-world datasets demonstrates that panelGC enhances the quality control and reliability of hybridization capture panel sequencing.
准确评估基因组内的片段丰度在临床基因组学应用中至关重要,例如拷贝数变异 (CNV) 的分析。然而,在具有不同鸟嘌呤-胞嘧啶 (GC) 含量的区域中,这一任务常常受到覆盖偏差的阻碍。这些偏差在杂交捕获测序中尤为严重,因为 GC 会影响探针杂交和聚合酶链反应 (PCR) 扩增效率。这种与 GC 含量相关的变化会对杂交捕获面板中 CNV 调用的准确性产生负面影响。在本报告中,我们提出了 panelGC,这是一种新的度量标准,用于量化和监测杂交捕获测序数据中的 GC 偏差。我们验证了 panelGC 的功效,证明其能够识别和标记潜在的程序异常,即使在仪器和实验监测数据不易获得的情况下也是如此。使用真实数据集进行验证表明,panelGC 提高了杂交捕获面板测序的质量控制和可靠性。