School of Molecular Sciences, Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona, USA.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021 Nov;13(6):e1729. doi: 10.1002/wnan.1729. Epub 2021 May 19.
Recent advances in nanotechnology have enabled rapid progress in many areas of biomedical research, including drug delivery, targeted therapies, imaging, and sensing. The emerging field of DNA nanotechnology, in which oligonucleotides are designed to self-assemble into programmable 2D and 3D nanostructures, offers great promise for further advancements in biomedicine. DNA nanostructures present highly addressable and functionally diverse platforms for biological applications due to their ease of construction, controllable architecture and size/shape, and multiple avenues for chemical modification. Both supramolecular and covalent modification with small molecules and polymers have been shown to expand or enhance the functions of DNA nanostructures in biological contexts. These alterations include the addition of small molecule, protein, or nucleic acid moieties that enable structural stability under physiological conditions, more efficient cellular uptake and targeting, delivery of various molecular cargos, stimulus-responsive behaviors, or modulation of a host immune response. Herein, various types of DNA nanostructure modifications and their functional consequences are examined, followed by a brief discussion of the future opportunities for functionalized DNA nanostructures as well as the barriers that must be overcome before their translational use. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
近年来,纳米技术的发展使得许多生物医学研究领域取得了快速进展,包括药物输送、靶向治疗、成像和传感。新兴的 DNA 纳米技术领域,寡核苷酸被设计为自组装成可编程的 2D 和 3D 纳米结构,为生物医学的进一步发展带来了巨大的希望。由于 DNA 纳米结构易于构建、可控的结构和大小/形状以及多种化学修饰途径,因此它们是具有高度寻址能力和功能多样性的生物应用平台。小分子和聚合物的超分子和共价修饰已被证明可以扩展或增强 DNA 纳米结构在生物环境中的功能。这些改变包括添加小分子、蛋白质或核酸部分,使它们在生理条件下具有结构稳定性、更有效的细胞摄取和靶向性、各种分子货物的递呈、对刺激的响应行为或宿主免疫反应的调节。本文探讨了各种类型的 DNA 纳米结构修饰及其功能后果,并简要讨论了功能化 DNA 纳米结构的未来机遇以及在其转化应用之前必须克服的障碍。本文属于以下类别: 生物学中的纳米技术方法 > 生物学中的纳米级系统 治疗方法和药物发现 > 新兴技术 基于生物材料的核酸结构。