Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
Adv Mater. 2024 Mar;36(10):e2210455. doi: 10.1002/adma.202210455. Epub 2023 Mar 30.
Along with the rapid development and ever-deepening understanding of nanoscience and nanotechnology, nanomaterials hold promise to mimic the highly evolved biological exquisite nanostructures and sophisticated functions. Here, inspired by the ubiquitous antibacterial nanostructures on the wing surfaces of some insects, a NiCo O nanozyme with self-adaptive hierarchical nanostructure is developed that can capture bacteria of various morphotypes via the physico-mechanical interaction between the nanostructure and bacteria. Moreover, the developed biomimetic nanostructure further exhibits superior peroxidase-like catalytic activity, which can catalytically generate highly toxic reactive oxygen species that disrupt bacterial membranes and induce bacterial apoptosis. Therefore, the mechano-catalytic coupling property of this NiCo O nanozyme allows for an extensive and efficient antibacterial application, with no concerns of antimicrobial resistance. This work suggests a promising strategy for the rational design of advanced antibacterial materials by mimicking biological antibiosis.
随着纳米科学和纳米技术的飞速发展和不断深入,纳米材料有望模拟高度进化的生物精细纳米结构和复杂功能。在这里,受一些昆虫翅膀表面无处不在的抗菌纳米结构的启发,开发了一种具有自适应分层纳米结构的 NiCoO 纳米酶,通过纳米结构与细菌之间的物理力学相互作用,可以捕获各种形态的细菌。此外,所开发的仿生纳米结构进一步表现出优异的过氧化物酶样催化活性,可以催化生成高度有毒的活性氧物质,破坏细菌膜并诱导细菌凋亡。因此,这种 NiCoO 纳米酶的机械催化耦合特性允许广泛而高效的抗菌应用,而不必担心抗微生物耐药性。这项工作通过模拟生物抗菌作用,为合理设计先进的抗菌材料提供了一种很有前途的策略。