Suppr超能文献

通过重度数据增强改进基于深度学习的自动颅骨缺陷重建:从图像配准到潜在扩散模型。

Improving deep learning-based automatic cranial defect reconstruction by heavy data augmentation: From image registration to latent diffusion models.

机构信息

AGH University of Krakow, Department of Measurement and Electronics, Kraków, al. Mickiewicza 30, PL32059, Poland; University of Applied Sciences Western Switzerland (HES-SO Valais), Information Systems Institute, Sierre, Rue de Technopôle 3, 3960, Switzerland.

AGH University of Krakow, Department of Measurement and Electronics, Kraków, al. Mickiewicza 30, PL32059, Poland.

出版信息

Comput Biol Med. 2024 Nov;182:109129. doi: 10.1016/j.compbiomed.2024.109129. Epub 2024 Sep 11.

Abstract

Modeling and manufacturing of personalized cranial implants are important research areas that may decrease the waiting time for patients suffering from cranial damage. The modeling of personalized implants may be partially automated by the use of deep learning-based methods. However, this task suffers from difficulties with generalizability into data from previously unseen distributions that make it difficult to use the research outcomes in real clinical settings. Due to difficulties with acquiring ground-truth annotations, different techniques to improve the heterogeneity of datasets used for training the deep networks have to be considered and introduced. In this work, we present a large-scale study of several augmentation techniques, varying from classical geometric transformations, image registration, variational autoencoders, and generative adversarial networks, to the most recent advances in latent diffusion models. We show that the use of heavy data augmentation significantly increases both the quantitative and qualitative outcomes, resulting in an average Dice Score above 0.94 for the SkullBreak and above 0.96 for the SkullFix datasets. The results show that latent diffusion models combined with vector quantized variational autoencoder outperform other generative augmentation strategies. Moreover, we show that the synthetically augmented network successfully reconstructs real clinical defects, without the need to acquire costly and time-consuming annotations. The findings of the work will lead to easier, faster, and less expensive modeling of personalized cranial implants. This is beneficial to numerous people suffering from cranial injuries. The work constitutes a considerable contribution to the field of artificial intelligence in the automatic modeling of personalized cranial implants.

摘要

个性化颅骨植入物的建模和制造是重要的研究领域,可缩短颅骨损伤患者的等待时间。通过使用基于深度学习的方法,可以部分自动化个性化植入物的建模。然而,这项任务存在泛化到以前未见分布数据的困难,这使得难以将研究结果应用于实际临床环境。由于难以获取真实标签,因此必须考虑并引入不同的技术来提高用于训练深度网络的数据集的异质性。在这项工作中,我们对几种增强技术进行了大规模研究,这些技术包括从经典的几何变换、图像配准、变分自动编码器和生成对抗网络到最近在潜在扩散模型中的进展。我们表明,使用重数据增强显著提高了定量和定性的结果,导致 SkullBreak 和 SkullFix 数据集的平均骰子分数均高于 0.94。结果表明,潜在扩散模型与向量量化变分自动编码器相结合,优于其他生成性增强策略。此外,我们表明,合成增强网络成功地重建了真实的临床缺陷,而无需获取昂贵且耗时的注释。这项工作的结果将导致个性化颅骨植入物的建模更容易、更快、更经济。这对许多遭受颅骨损伤的人都有益。这项工作是人工智能领域在个性化颅骨植入物自动建模方面的重要贡献。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验