From the Department of Nuclear Medicine (H.J.S., Jai-Hyuen Lee), Dankook University College of Medicine, Cheonan, Chung Nam; Department of Nuclear Medicine (J.S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (R.J.B., J.J.L.-G., J.C.M., A.D.), Washington University School of Medicine, St. Louis, MO; Department of Clinical Epidemiology and Biostatistics (S.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Neurology (G.S.D.), Mayo Clinic College of Medicine and Science, Jacksonville, FL; Department of Neurology (J.P.C.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Neurology (S.B.B.), University of Pittsburgh School of Medicine, PA; Neuroscience Research Australia (P.R.S.); School of Medical Sciences (P.R.S.), University of New South Wales, Sydney, Australia; Department of Cellular Neurology (M.J.), Hertie Institute for Clinical Brain Research, University of Tübingen; German Center for Neurodegenerative Diseases (M.J.), Tübingen; Department of Neurology (J.L.), Ludwig-Maximilians-Universität München; German Center for Neurodegenerative Diseases (J.L.), Munich; Munich Cluster for Systems Neurology (SyNergy) (J.L.), Germany; Department of Neurology (Jae-Hong Lee), University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea; Department of Pathology and Immunology (R.J.P.), Knight Alzheimer's Disease Research Center (R.J.P., J.H.), and Department of Neurology (R.J.P., J.H.), Washington University in St. Louis; Department of Psychiatry (C.C.), Washington University School of Medicine; Department of Psychological and Brain Sciences (J.H.), Washington University, St. Louis, MO; and Department of Neurology (S.P.S.), The Warren Alpert Medical School of Brown University, Butler Hospital, Providence, RI.
Neurology. 2024 Oct 8;103(7):e209766. doi: 10.1212/WNL.0000000000209766. Epub 2024 Sep 13.
It remains unknown whether the associations between protective lifestyles and sporadic dementia risk reported in observational studies also affect age at symptom onset (AAO) in autosomal dominant Alzheimer disease (ADAD) with predominant genetic influences. We investigated the associations between resilience-related life experiences and interindividual AAO variability in ADAD.
We performed a longitudinal and confirmatory analysis of the Dominantly Inherited Alzheimer Network prospective observational cohort (January 2009-June 2018, follow-up duration 2.13 ± 2.22 years), involving clinical, CSF, and lifestyle/behavioral assessments. We performed a 2-pronged comprehensive resilience assessment in each cohort. Cohort 1, incorporating the general resilience definition (cognitive maintenance [Clinical Dementia Rating = 0] despite high pathology), included carriers during the periods of significant CSF variability and grouped into resilience/resistance outcome bins according to the dichotomous pathologic and cognitive statuses, subcategorized by the estimated years from expected symptom onset (EYO). Cohort 2, focused on ADAD-specific genetically determined time frame characterizing the onset predictability, included asymptomatic participants with available preclinical lifestyle data and AAO outcomes and grouped into delayed or earlier AAO relative to the parental AAO. Associations of cognitive, CSF, and lifestyle/behavioral predictors with binary outcomes were investigated using logistic regression.
Of 320 carriers (age 38.19 ± 10.94 years, female 56.25%), cohort 1 included 218 participants (39.00 ± 9.37 years, 57.34%) and cohort 2 included 28 participants (43.34 ± 7.40 years, 71.43%). In cohort 1, 218 carriers after -20 EYO, when the interindividual variability (SD) of CSF first became more than twice greater in carriers than in noncarriers, were grouped into low-risk control (asymptomatic, low pathology, n = 103), high-resilience (asymptomatic despite high pathology, n = 60), low-resilience (symptomatic despite low pathology, n = 15), and susceptible control (symptomatic, high pathology, n = 40) groups. Multivariable predictors of high resilience, controlling for age and depression, included higher conscientiousness (odds ratio 1.051 [95% CI 1.016-1.086], = 0.004), openness to experience (1.068 [1.005-1.135], = 0.03) (vs. susceptible controls), and agreeableness (1.082 [1.015-1.153], = 0.02) (vs. low resilience). From 1 to 3 years before parental AAO (cohort 2), the multivariable predictor of delayed AAO, controlling for CSF, was higher conscientiousness (0.916 [0.845-0.994], = 0.036).
Among the cognitively and socially integrated life experiences associated with resilience, measures of conscientiousness were useful indicators for evaluating resilience and predicting future dementia onset in late preclinical ADAD.
观察性研究报告的保护性生活方式与散发性痴呆风险之间的关联,是否也会影响常染色体显性阿尔茨海默病(ADAD)的发病年龄(AAO),这仍然未知。ADAD 主要受遗传影响,我们研究了韧性相关生活经历与 ADAD 个体间 AAO 变异性的相关性。
我们对显性遗传性阿尔茨海默病网络前瞻性观察队列(2009 年 1 月至 2018 年 6 月,随访时间 2.13±2.22 年)进行了纵向和验证性分析,涉及临床、CSF 和生活方式/行为评估。我们对每个队列进行了两方面的全面韧性评估。队列 1 纳入了具有显著 CSF 变异性时期的携带者,并纳入了一般韧性定义(认知维持[临床痴呆评分=0],尽管存在高病理学),根据二分病理和认知状态将其分为韧性/抵抗结果箱,并根据预期发病时间(EYO)进行了亚分类。队列 2 专注于 ADAD 特定的遗传确定的时间段,该时间段特征在于发病可预测性,纳入了具有可用的临床前生活方式数据和 AAO 结果的无症状参与者,并根据与父母 AAO 相比,将其分为 AAO 延迟或提前。使用逻辑回归研究认知、CSF 和生活方式/行为预测因子与二元结果之间的关联。
在 320 名携带者(年龄 38.19±10.94 岁,女性 56.25%)中,队列 1 包括 218 名参与者(39.00±9.37 岁,57.34%),队列 2 包括 28 名参与者(43.34±7.40 岁,71.43%)。在队列 1 中,在 218 名携带者 EYO 减去 20 年后,当 CSF 个体间变异性(SD)开始比非携带者增加两倍以上时,将其分为低风险对照组(无症状,低病理学,n=103)、高韧性组(无症状,尽管病理学较高,n=60)、低韧性组(有症状,尽管病理学较低,n=15)和易感对照组(有症状,高病理学,n=40)。控制年龄和抑郁因素后,高韧性的多变量预测因子包括更高的责任心(优势比 1.051[95%CI 1.016-1.086],=0.004)、开放性体验(1.068[1.005-1.135],=0.03)(与易感对照组相比)和宜人性(1.082[1.015-1.153],=0.02)(与低韧性组相比)。从父母 AAO 前 1 到 3 年(队列 2),CSF 控制下延迟 AAO 的多变量预测因子是更高的责任心(0.916[0.845-0.994],=0.036)。
在与韧性相关的认知和社交融合的生活经历中,尽责度量表是评估韧性和预测 ADAD 临床前后期痴呆发病的有用指标。