Tithito Tanatsaparn, Sillapaprayoon Siwapech, Chantho Varissara, Pimtong Wittaya, Thongbunchoo Jirawan, Charoenphandhu Narattaphol, Krishnamra Nateetip, Yong Nararat, Lert-Itthiporn Aurachat, Maneeprakorn Weerakanya, Pon-On Weeraphat
Department of Physics, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) Pathum Thani 12120 Thailand
RSC Adv. 2024 Sep 16;14(40):29242-29253. doi: 10.1039/d4ra03867c. eCollection 2024 Sep 12.
The treatment and regeneration of bone defects, especially tumor-induced defects, is an issue in clinical practice and remains a major challenge for bone substitute material invention. In this research, a composite material of biomimetic bone-like apatite based on trace element co-doped apatite (Ca M (PO)(CO)(OH); M = trace elements of Mg, Fe, Zn, Mn, Cu, Ni, Mo, Sr and BO ; THA)-integrated-biocompatible magnetic Mn-Zn ferrite ((Mn, Zn)FeO nanoparticles, BioMags) called THAiBioMags was prepared a co-precipitation method. Its characteristics, , physical properties, hyperthermia performance, ion/drug delivery, were investigated using osteoblasts (bone-forming cells) and using zebrafish. The synthesized THAiBioMags particles revealed superparamagnetic behaviour at room temperature. Under the influence of an alternating magnetic field, THAiBioMags particles demonstrated a change in temperature, indicating their potential for magnetic hyperthermia, in which THAiBioMags further exhibited a specific absorption rate (SAR) value of 9.44 W g ( = 44 A, = 6.03 kA m and = 130 kHz). In addition, the as-prepared particles demonstrated sustained ion/drug (doxorubicin (DOX)) release under physiological pH conditions. Biological assay analysis revealed that THAiBioMags exhibited no toxicity towards osteoblast cells and demonstrated excellent cell adhesion properties. studies employing an embryonic zebrafish model showed the non-toxic nature of the synthesized THAiBioMags particles, as revealed by evaluation of the survivability, hatching rate, and embryonic morphology. These results could potentially lead to the design and fabrication of magnetic scaffolds to be used in therapeutic treatment and bone regeneration.
骨缺损尤其是肿瘤诱导性缺损的治疗与再生是临床实践中的一个问题,并且仍然是骨替代材料发明的一项重大挑战。在本研究中,通过共沉淀法制备了一种基于微量元素共掺杂磷灰石(Ca₁₀M₂(PO₄)₆(CO₃)(OH)₂;M = Mg、Fe、Zn、Mn、Cu、Ni、Mo、Sr和B等微量元素)集成生物相容性磁性Mn-Zn铁氧体((Mn,Zn)Fe₂O₄纳米颗粒,BioMags)的仿生骨样磷灰石复合材料,称为THAiBioMags。利用成骨细胞(骨形成细胞)并通过斑马鱼对其特性,即物理性质、热疗性能、离子/药物递送进行了研究。合成的THAiBioMags颗粒在室温下表现出超顺磁性行为。在交变磁场的影响下,THAiBioMags颗粒表现出温度变化,表明其具有磁热疗潜力,其中THAiBioMags进一步表现出9.44 W g⁻¹的比吸收率(SAR)值(f = 44 kHz,H = 6.03 kA m⁻¹,T = 130 kHz)。此外,所制备的颗粒在生理pH条件下表现出离子/药物(阿霉素(DOX))的持续释放。生物学测定分析表明,THAiBioMags对成骨细胞无毒性,并表现出优异的细胞粘附特性。采用胚胎斑马鱼模型的研究表明,通过对存活率、孵化率和胚胎形态的评估,合成的THAiBioMags颗粒具有无毒性。这些结果可能会促使设计和制造用于治疗和骨再生的磁性支架。