Kew Stephanie Yen Nee, Mok Siew-Ying, Goh Choon-Hian
Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor Darul Ehsan, Malaysia.
MethodsX. 2024 May 25;13:102765. doi: 10.1016/j.mex.2024.102765. eCollection 2024 Dec.
Amyotrophic lateral sclerosis (ALS) characterized by progressive degeneration of motor neurons is a debilitating disease, posing substantial challenges in both prognosis and daily life assistance. However, with the advancement of machine learning (ML) which is renowned for tackling many real-world settings, it can offer unprecedented opportunities in prognostic studies and facilitate individuals with ALS in motor-imagery tasks. ML models, such as random forests (RF), have emerged as the most common and effective algorithms for predicting disease progression and survival time in ALS. The findings revealed that RF models had an excellent predictive performance for ALS, with a testing R2 of 0.524 and minimal treatment effects of 0.0717 for patient survival time. Despite significant limitations in sample size, with a maximum of 18 participants, which may not adequately reflect the population diversity being studied, ML approaches have been effectively applied to ALS datasets, and numerous prognostic models have been tested using neuroimaging data, longitudinal datasets, and core clinical variables. In many literatures, the constraints of ML models are seldom explicitly enunciated. Therefore, the main objective of this research is to provide a review of the most significant studies on the usage of ML models for analyzing ALS. This review covers a variation of ML algorithms involved in applications in ALS prognosis besides, leveraging ML to improve the efficacy of brain-computer interfaces (BCIs) for ALS individuals in later stages with restricted voluntary muscular control. The key future advances in individualized care and ALS prognosis may include the advancement of more personalized care aids that enable real-time input and ongoing validation of ML in diverse healthcare contexts.
肌萎缩侧索硬化症(ALS)以运动神经元的进行性退化为特征,是一种使人衰弱的疾病,在预后和日常生活协助方面都带来了巨大挑战。然而,随着以应对许多现实世界情况而闻名的机器学习(ML)的发展,它可以在预后研究中提供前所未有的机会,并在运动想象任务中帮助ALS患者。诸如随机森林(RF)等ML模型已成为预测ALS疾病进展和生存时间最常用且有效的算法。研究结果表明,RF模型对ALS具有出色的预测性能,测试R2为0.524,对患者生存时间的最小治疗效果为0.0717。尽管样本量存在显著限制,最多只有18名参与者,这可能无法充分反映所研究人群的多样性,但ML方法已有效地应用于ALS数据集,并且已经使用神经影像数据、纵向数据集和核心临床变量测试了许多预后模型。在许多文献中,ML模型的局限性很少被明确阐述。因此,本研究的主要目的是对使用ML模型分析ALS的最重要研究进行综述。除了利用ML提高后期自愿肌肉控制受限的ALS患者的脑机接口(BCI)疗效外,本综述还涵盖了参与ALS预后应用的各种ML算法。个性化护理和ALS预后未来的关键进展可能包括开发更个性化的护理辅助工具,这些工具能够在不同的医疗环境中实现ML的实时输入和持续验证。