Hadden Matthew, Martinez-Martin David, Yong Ken-Tye, Ramaswamy Yogambha, Singh Gurvinder
The School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.
Materials (Basel). 2022 Mar 13;15(6):2111. doi: 10.3390/ma15062111.
Functional nanoporous materials are categorized as an important class of nanostructured materials because of their tunable porosity and pore geometry (size, shape, and distribution) and their unique chemical and physical properties as compared with other nanostructures and bulk counterparts. Progress in developing a broad spectrum of nanoporous materials has accelerated their use for extensive applications in catalysis, sensing, separation, and environmental, energy, and biomedical areas. The purpose of this review is to provide recent advances in synthesis strategies for designing ordered or hierarchical nanoporous materials of tunable porosity and complex architectures. Furthermore, we briefly highlight working principles, potential pitfalls, experimental challenges, and limitations associated with nanoporous material fabrication strategies. Finally, we give a forward look at how digitally controlled additive manufacturing may overcome existing obstacles to guide the design and development of next-generation nanoporous materials with predefined properties for industrial manufacturing and applications.
功能性纳米多孔材料被归类为一类重要的纳米结构材料,这是因为它们具有可调节的孔隙率和孔几何结构(尺寸、形状和分布),并且与其他纳米结构及块状材料相比,具有独特的化学和物理性质。开发多种纳米多孔材料方面的进展加速了它们在催化、传感、分离以及环境、能源和生物医学领域的广泛应用。本综述的目的是介绍在设计具有可调孔隙率和复杂结构的有序或分级纳米多孔材料的合成策略方面的最新进展。此外,我们简要强调了与纳米多孔材料制造策略相关的工作原理、潜在问题、实验挑战和局限性。最后,我们展望了数字控制增材制造如何克服现有障碍,以指导设计和开发具有预定义性质的下一代纳米多孔材料,用于工业制造和应用。