Suppr超能文献

利用机器学习、分子对接和实验验证从美国食品药品监督管理局(FDA)批准的药物中鉴定潜在的类胰蛋白酶抑制剂

Identification of Potential Tryptase Inhibitors from FDA-Approved Drugs Using Machine Learning, Molecular Docking, and Experimental Validation.

作者信息

Yasir Muhammad, Park Jinyoung, Han Eun-Taek, Park Won Sun, Han Jin-Hee, Chun Wanjoo

机构信息

Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, 24341, Republic of Korea.

Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, Republic of Korea.

出版信息

ACS Omega. 2024 Sep 4;9(37):38820-38831. doi: 10.1021/acsomega.4c04886. eCollection 2024 Sep 17.

Abstract

This study explores the innovative use of machine learning (ML) to identify novel tryptase inhibitors from a library of FDA-approved drugs, with subsequent confirmation via molecular docking and experimental validation. Tryptase, a significant mediator in inflammatory and allergic responses, presents a therapeutic target for various inflammatory diseases. However, the development of effective tryptase inhibitors has been challenging due to the enzyme's complex activation and regulation mechanisms. Utilizing a machine learning model, we screened an extensive FDA-approved drug library to identify potential tryptase inhibitors. The predicted compounds were then subjected to molecular docking to assess their binding affinity and conformation within the tryptase active site. Experimental validation was performed using RBL-2H3 cells, a rat basophilic leukemia cell line, where the efficacy of these compounds was evaluated based on their ability to inhibit tryptase activity and suppress β-hexosaminidase activity and histamine release. Our results demonstrated that several FDA-approved drugs, including landiolol, laninamivir, and cidofovir, significantly inhibited tryptase activity. Their efficacy was comparable to that of the FDA-approved mast cell stabilizer nedocromil and the investigational agent APC-366. These findings not only underscore the potential of ML in accelerating drug repurposing but also highlight the feasibility of this approach in identifying effective tryptase inhibitors. This research contributes to the field of drug discovery, offering a novel pathway to expedite the development of therapeutics for tryptase-related pathologies.

摘要

本研究探索了机器学习(ML)的创新应用,以从美国食品药品监督管理局(FDA)批准的药物库中识别新型类胰蛋白酶抑制剂,并随后通过分子对接和实验验证进行确认。类胰蛋白酶是炎症和过敏反应中的一种重要介质,是各种炎症性疾病的治疗靶点。然而,由于该酶复杂的激活和调节机制,开发有效的类胰蛋白酶抑制剂一直具有挑战性。我们利用机器学习模型,对广泛的FDA批准药物库进行筛选,以识别潜在的类胰蛋白酶抑制剂。然后,对预测的化合物进行分子对接,以评估它们在类胰蛋白酶活性位点内的结合亲和力和构象。使用大鼠嗜碱性白血病细胞系RBL-2H3细胞进行实验验证,根据这些化合物抑制类胰蛋白酶活性、抑制β-己糖胺酶活性和组胺释放的能力来评估其疗效。我们的结果表明,几种FDA批准的药物,包括兰地洛尔、拉尼米韦和西多福韦,能显著抑制类胰蛋白酶活性。它们的疗效与FDA批准的肥大细胞稳定剂奈多罗米和研究药物APC-366相当。这些发现不仅强调了机器学习在加速药物重新利用方面的潜力,也突出了这种方法在识别有效类胰蛋白酶抑制剂方面的可行性。这项研究为药物发现领域做出了贡献,为加速开发治疗类胰蛋白酶相关疾病的疗法提供了一条新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a57/11411685/32686bd23073/ao4c04886_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验