Suppr超能文献

基于机器学习的乳腺浸润性微乳头状癌预后指数预测模型:一项 SEER 基于人群的研究。

Predictive model of prognosis index for invasive micropapillary carcinoma of the breast based on machine learning: a SEER population-based study.

机构信息

Department of Breast Surgery, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, No.420, Fu Ma Road Jinan District, Fuzhou, Fujian Province, 350011, China.

Department of Thyroid and Breast Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, 352100, China.

出版信息

BMC Med Inform Decis Mak. 2024 Sep 27;24(1):268. doi: 10.1186/s12911-024-02669-y.

Abstract

BACKGROUND

Invasive micropapillary carcinoma (IMPC) is a rare subtype of breast cancer. Its epidemiological features, treatment principles, and prognostic factors remain controversial.

OBJECTIVE

This study aimed to develop an improved machine learning-based model to predict the prognosis of patients with invasive micropapillary carcinoma.

METHODS

A total of 1123 patients diagnosed with IMPC after surgery between 1998 and 2019 were identified from the Surveillance, Epidemiology, and End Results (SEER) database for survival analysis. Univariate and multivariate analyses were performed to explore independent prognostic factors for the overall and disease-specific survival of patients with IMPC. Five machine learning algorithms were developed to predict the 5-year survival of these patients.

RESULTS

Cox regression analysis indicated that patients aged > 65 years had a significantly worse prognosis than those younger in age, while unmarried patients had a better prognosis than married patients. Patients diagnosed between 2001 and 2005 had a significant risk reduction of mortality compared with other periods. The XGBoost model outperformed the other models with a precision of 0.818 and an area under the curve of 0.863.

CONCLUSIONS

A machine learning model for IMPC in patients with breast cancer was developed to estimate the 5-year OS. The XGBoost model had a promising performance and can help clinicians determine the early prognosis of patients with IMPC; therefore, the model can improve clinical outcomes by influencing management strategies and patient health care decisions.

摘要

背景

浸润性微乳头状癌(IMPC)是一种罕见的乳腺癌亚型。其流行病学特征、治疗原则和预后因素仍存在争议。

目的

本研究旨在建立一种改进的基于机器学习的模型,以预测浸润性微乳头状癌患者的预后。

方法

从监测、流行病学和最终结果(SEER)数据库中确定了 1998 年至 2019 年间手术后诊断为 IMPC 的 1123 例患者进行生存分析。进行单因素和多因素分析,以探讨影响 IMPC 患者总生存和疾病特异性生存的独立预后因素。开发了五种机器学习算法来预测这些患者的 5 年生存率。

结果

Cox 回归分析表明,年龄>65 岁的患者预后明显差于年龄较小的患者,而未婚患者的预后好于已婚患者。与其他时期相比,2001 年至 2005 年诊断的患者死亡率显著降低。XGBoost 模型的精度为 0.818,曲线下面积为 0.863,优于其他模型。

结论

建立了用于乳腺癌患者 IMPC 的机器学习模型,以估计 5 年 OS。XGBoost 模型表现良好,可以帮助临床医生判断 IMPC 患者的早期预后;因此,该模型可以通过影响管理策略和患者的医疗保健决策来改善临床结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9918/11428430/878bbd32cc14/12911_2024_2669_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验