Zhong Ruilan, Wei Ruifu, Zhang Chunyu, Ji Xunxiu, Hu Lihua, Li Limei, Mei Zhenxin
Department of Hematology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
Department of Oncology and Hematology, Dongfang People's Hospital, Dongfang, Hainan, China.
Sci Prog. 2025 Apr-Jun;108(2):368504251335082. doi: 10.1177/00368504251335082. Epub 2025 Apr 17.
ObjectivesFollicular lymphoma-grade 3 is an aggressive subtype of Follicular lymphoma with a higher recurrence risk and poorer survival outcomes compared to lower-grade Follicular lymphoma. Existing prognostic models often lack accuracy due to disease heterogeneity and insufficient integration of demographic and treatment variables. This study aimed to identify independent prognostic factors and develop a nomogram for predicting OS in Follicular lymphoma-grade 3 patients using the SEER database.MethodsThis study is a retrospective cohort study. Data from 1026 Follicular lymphoma-grade 3 patients diagnosed between 2016 and 2021 were extracted from the SEER database. Patients were randomly divided into training (n = 718) and validation (n = 308) cohorts. Prognostic factors were identified using RSF, LASSO regression, and the Boruta algorithm. A multivariate Cox regression model was used to identify independent prognostic factors, which were incorporated into a nomogram. The model's performance was evaluated using ROC curves, calibration curves, and DCA.ResultsAge, radiotherapy, and liver metastasis were identified as independent prognostic factors for OS. The nomogram demonstrated strong predictive performance with AUC values exceeding 0.7 at 12, 36, and 60 months in both cohorts. Calibration curves confirmed the agreement between predicted and observed OS rates. Risk stratification using the nomogram identified significant survival differences between low-risk and high-risk groups (P < 0.05).ConclusionThis study developed a validated nomogram for Follicular lymphoma-grade 3 that integrates clinical, demographic, and treatment factors, offering superior predictive accuracy over traditional staging systems. The model provides a reliable tool for individualized prognosis assessment and treatment optimization in clinical practice.
目的
滤泡性淋巴瘤3级是滤泡性淋巴瘤的一种侵袭性亚型,与低级别滤泡性淋巴瘤相比,其复发风险更高,生存结果更差。由于疾病的异质性以及人口统计学和治疗变量整合不足,现有的预后模型往往缺乏准确性。本研究旨在利用监测、流行病学与最终结果(SEER)数据库,识别独立的预后因素,并开发一种列线图,用于预测滤泡性淋巴瘤3级患者的总生存期(OS)。
方法
本研究为一项回顾性队列研究。从SEER数据库中提取了2016年至2021年期间诊断的1026例滤泡性淋巴瘤3级患者的数据。患者被随机分为训练队列(n = 718)和验证队列(n = 308)。使用随机生存森林(RSF)、套索回归和Boruta算法识别预后因素。采用多变量Cox回归模型识别独立的预后因素,并将其纳入列线图。使用受试者工作特征(ROC)曲线、校准曲线和决策曲线分析(DCA)评估模型的性能。
结果
年龄、放疗和肝转移被确定为OS的独立预后因素。列线图在两个队列中均显示出强大的预测性能,在12、36和60个月时的曲线下面积(AUC)值均超过0.7。校准曲线证实了预测的和观察到的OS率之间的一致性。使用列线图进行风险分层,发现低风险组和高风险组之间存在显著的生存差异(P < 0.05)。
结论
本研究为滤泡性淋巴瘤3级开发了一种经过验证的列线图,该列线图整合了临床、人口统计学和治疗因素,比传统分期系统具有更高的预测准确性。该模型为临床实践中的个体化预后评估和治疗优化提供了可靠的工具。