Suppr超能文献

社交媒体文本中情感分类方案的评估:一种基于注释的方法。

Evaluation of emotion classification schemes in social media text: an annotation-based approach.

机构信息

Beijing Institute of Technology, Zhuhai School, No.6, JinFeng Road, Zhuhai, Guangdong Province, 519088, China.

出版信息

BMC Psychol. 2024 Sep 27;12(1):503. doi: 10.1186/s40359-024-02008-w.

Abstract

BACKGROUND

Emotion analysis of social media texts is an innovative method for gaining insight into the mental state of the public and understanding social phenomena. However, emotion is a complex psychological phenomenon, and there are various emotion classification schemes. Which one is suitable for textual emotion analysis?

METHODS

We proposed a framework for evaluating emotion classification schemes based on manual annotation experiments. Considering both the quality and efficiency of emotion analysis, we identified five criteria, which are solidity, coverage, agreement, compactness, and distinction. Qualitative and quantitative factors were synthesized using the AHP, where quantitative metrics were derived from annotation experiments. Applying this framework, 2848 Sina Weibo posts related to public events were used to evaluate the five emotion schemes: SemEval's four emotions, Ekman's six basic emotions, ancient China's Seven Emotions, Plutchik's eight primary emotions, and GoEmotions' 27 emotions.

RESULTS

The AHP evaluation result shows that Ekman's scheme had the highest score. The multi-dimensional scaling (MDS) analysis shows that Ekman, Plutchik, and the Seven Emotions are relatively similar. We analyzed Ekman's six basic emotions in relation to the emotion categories of the other schemes. The correspondence analysis shows that the Seven Emotions' joy aligns with Ekman's happiness, love demonstrates a significant correlation with happiness, but desire is not significantly correlated with any emotion. Compared to Ekman, Plutchik has two more positive emotions: trust and anticipation. Trust is somewhat associated with happiness, but anticipation is weakly associated with happiness. Each emotion of Ekman's corresponds to several similar emotions in GoEmotions. However, some emotions in GoEmotions are not clearly related to Ekman's, such as approval, love, pride, amusement, etc. CONCLUSION: Ekman's scheme performs best under the evaluation framework. However, it lacks sufficient positive emotion categories for the corpus.

摘要

背景

社交媒体文本的情感分析是一种获取公众心理状态洞察力和理解社会现象的创新方法。然而,情感是一种复杂的心理现象,存在各种情感分类方案。哪种方案适合文本情感分析?

方法

我们提出了一种基于人工注释实验评估情感分类方案的框架。考虑到情感分析的质量和效率,我们确定了五个标准,分别是坚实性、覆盖范围、一致性、紧凑性和区分度。使用层次分析法(AHP)综合了定性和定量因素,其中定量指标来自注释实验。应用该框架,我们评估了五种情感方案:SemEval 的四种情感、Ekman 的六种基本情感、中国古代的七种情感、Plutchik 的八种原始情感和 GoEmotions 的 27 种情感,共评估了 2848 条与公共事件相关的新浪微博帖子。

结果

AHP 评估结果表明,Ekman 的方案得分最高。多维尺度分析(MDS)表明,Ekman、Plutchik 和七种情感较为相似。我们分析了 Ekman 的六种基本情感与其他方案的情感类别之间的关系。对应分析表明,七种情感中的喜悦与 Ekman 的快乐相对应,爱与快乐有显著相关性,但欲望与任何情感都没有显著相关性。与 Ekman 相比,Plutchik 有两种更积极的情感:信任和期待。信任与快乐有一定的相关性,但期待与快乐相关性较弱。Ekman 的每种情感都与 GoEmotions 的几种相似情感相对应。然而,GoEmotions 中的一些情感与 Ekman 的情感没有明显的对应关系,例如赞同、爱、骄傲、娱乐等。

结论

Ekman 的方案在评估框架下表现最佳。然而,对于语料库来说,它缺乏足够的积极情感类别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a4d/11438282/7386e9731632/40359_2024_2008_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验