Suppr超能文献

社交媒体情绪标注指南(SMEmo):制定与初步有效性。

Social media emotions annotation guide (SMEmo): Development and initial validity.

机构信息

College of Information Studies, University of Maryland, College Park, MD, USA.

Applied Research Laboratory for Intelligence and Security (ARLIS), University of Maryland, College Park, MD, USA.

出版信息

Behav Res Methods. 2024 Aug;56(5):4435-4485. doi: 10.3758/s13428-023-02195-1. Epub 2023 Sep 11.

Abstract

The proper measurement of emotion is vital to understanding the relationship between emotional expression in social media and other factors, such as online information sharing. This work develops a standardized annotation scheme for quantifying emotions in social media using recent emotion theory and research. Human annotators assessed both social media posts and their own reactions to the posts' content on scales of 0 to 100 for each of 20 (Study 1) and 23 (Study 2) emotions. For Study 1, we analyzed English-language posts from Twitter (N = 244) and YouTube (N = 50). Associations between emotion ratings and text-based measures (LIWC, VADER, EmoLex, NRC-EIL, Emotionality) demonstrated convergent and discriminant validity. In Study 2, we tested an expanded version of the scheme in-country, in-language, on Polish (N = 3648) and Lithuanian (N = 1934) multimedia Facebook posts. While the correlations were lower than with English, patterns of convergent and discriminant validity with EmoLex and NRC-EIL still held. Coder reliability was strong across samples, with intraclass correlations of .80 or higher for 10 different emotions in Study 1 and 16 different emotions in Study 2. This research improves the measurement of emotions in social media to include more dimensions, multimedia, and context compared to prior schemes.

摘要

正确测量情感对于理解社交媒体中情感表达与其他因素(如在线信息共享)之间的关系至关重要。这项工作使用最新的情感理论和研究,为社交媒体中的情感量化开发了一个标准化的标注方案。人类标注者对 20 种(研究 1)和 23 种(研究 2)情感中的每一种,在 0 到 100 的量表上评估了社交媒体帖子及其对帖子内容的反应。在研究 1 中,我们分析了来自 Twitter(N=244)和 YouTube(N=50)的英语帖子。情感评分与基于文本的测量(LIWC、VADER、EmoLex、NRC-EIL、情绪性)之间的关联表明了收敛性和判别有效性。在研究 2 中,我们在国内、使用母语、针对波兰语(N=3648)和立陶宛语(N=1934)多媒体 Facebook 帖子中测试了该方案的扩展版本。虽然与英语的相关性较低,但与 EmoLex 和 NRC-EIL 的收敛性和判别有效性模式仍然存在。在所有样本中,编码者的可靠性都很强,在研究 1 中有 10 种不同的情感和研究 2 中有 16 种不同的情感的内类相关系数达到 0.80 或更高。与之前的方案相比,这项研究改进了社交媒体中情感的测量,包括更多的维度、多媒体和上下文。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验