Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
Medical Oncology, Dr. B.R.A. IRCH, All India Institute of Medical Sciences New Delhi, New Delhi, India.
Int J Comput Assist Radiol Surg. 2024 Oct;19(10):2089-2099. doi: 10.1007/s11548-024-03222-y. Epub 2024 Jul 23.
The current study explores the application of 3D U-Net architectures combined with Inception and ResNet modules for precise lung nodule detection through deep learning-based segmentation technique. This investigation is motivated by the objective of developing a Computer-Aided Diagnosis (CAD) system for effective diagnosis and prognostication of lung nodules in clinical settings.
The proposed method trained four different 3D U-Net models on the retrospective dataset obtained from AIIMS Delhi. To augment the training dataset, affine transformations and intensity transforms were utilized. Preprocessing steps included CT scan voxel resampling, intensity normalization, and lung parenchyma segmentation. Model optimization utilized a hybrid loss function that combined Dice Loss and Focal Loss. The model performance of all four 3D U-Nets was evaluated patient-wise using dice coefficient and Jaccard coefficient, then averaged to obtain the average volumetric dice coefficient (DSC) and average Jaccard coefficient (IoU) on a test dataset comprising 53 CT scans. Additionally, an ensemble approach (Model-V) was utilized featuring 3D U-Net (Model-I), ResNet (Model-II), and Inception (Model-III) 3D U-Net architectures, combined with two distinct patch sizes for further investigation.
The ensemble of models obtained the highest DSC of 0.84 ± 0.05 and IoU of 0.74 ± 0.06 on the test dataset, compared against individual models. It mitigated false positives, overestimations, and underestimations observed in individual U-Net models. Moreover, the ensemble of models reduced average false positives per scan in the test dataset (1.57 nodules/scan) compared to individual models (2.69-3.39 nodules/scan).
The suggested ensemble approach presents a strong and effective strategy for automatically detecting and delineating lung nodules, potentially aiding CAD systems in clinical settings. This approach could assist radiologists in laborious and meticulous lung nodule detection tasks in CT scans, improving lung cancer diagnosis and treatment planning.
本研究通过基于深度学习的分割技术,探索将 3D U-Net 架构与 Inception 和 ResNet 模块相结合,应用于精确的肺结节检测。这一研究旨在开发一种计算机辅助诊断(CAD)系统,以便在临床环境中有效诊断和预测肺结节。
该方法在德里 AIIMS 获取的回顾性数据集上对四个不同的 3D U-Net 模型进行了训练。为了扩充训练数据集,采用了仿射变换和强度变换。预处理步骤包括 CT 扫描体素重采样、强度归一化和肺实质分割。模型优化使用了一种混合损失函数,结合了 Dice Loss 和 Focal Loss。通过使用骰子系数和 Jaccard 系数对所有四个 3D U-Nets 进行了患者级别的评估,然后对 53 个 CT 扫描的测试数据集进行平均,得出平均体积骰子系数(DSC)和平均 Jaccard 系数(IoU)。此外,还使用了一种集成方法(Model-V),该方法采用了 3D U-Net(Model-I)、ResNet(Model-II)和 Inception(Model-III)3D U-Net 架构,以及两种不同的补丁大小,进行了进一步的研究。
与单个模型相比,模型集成获得了最高的测试数据集 DSC 为 0.84±0.05 和 IoU 为 0.74±0.06。它减轻了单个 U-Net 模型中观察到的假阳性、高估和低估。此外,与单个模型相比,模型集成减少了测试数据集(每个扫描 1.57 个结节)中的平均假阳性数量(每个扫描 2.69-3.39 个结节)。
所提出的集成方法为自动检测和描绘肺结节提供了一种强大而有效的策略,有可能辅助 CAD 系统在临床环境中使用。该方法可以帮助放射科医生完成 CT 扫描中费力和细致的肺结节检测任务,提高肺癌的诊断和治疗计划水平。