Suppr超能文献

基于联合[F]FET正电子发射断层显像(PET)与磁共振成像(MRI)的儿童胶质瘤自动检测与勾画

Automatic detection and delineation of pediatric gliomas on combined [F]FET PET and MRI.

作者信息

Ladefoged Claes Nøhr, Henriksen Otto Mølby, Mathiasen René, Schmiegelow Kjeld, Andersen Flemming Littrup, Højgaard Liselotte, Borgwardt Lise, Law Ian, Marner Lisbeth

机构信息

Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.

Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.

出版信息

Front Nucl Med. 2022 Aug 24;2:960820. doi: 10.3389/fnume.2022.960820. eCollection 2022.

Abstract

INTRODUCTION

Brain and central nervous system (CNS) tumors are the second most common cancer type in children and adolescents. Positron emission tomography (PET) imaging with radiolabeled amino acids visualizes the amino acid uptake in brain tumor cells compared with the healthy brain tissue, which provides additional information over magnetic resonance imaging (MRI) for differential diagnosis, treatment planning, and the differentiation of tumor relapse from treatment-related changes. However, tumor delineation is a time-consuming task subject to inter-rater variability. We propose a deep learning method for the automatic delineation of O-(2-[F]fluoroethyl)-l-tyrosine ([F]FET PET) pediatric CNS tumors.

METHODS

A total of 109 [F]FET PET and MRI scans from 66 pediatric patients with manually delineated reference were included. We trained an artificial neural network (ANN) for automatic delineation and compared its performance against the manual reference on delineation accuracy and subsequent clinical metric accuracy. For clinical metrics, we extracted the biological tumor volume (BTV) and tumor-to-background mean and max (TBR and TBR).

RESULTS

The ANN produced high tumor overlap (median dice-similarity coefficient [DSC] of 0.93). The clinical metrics extracted with the manual reference and the ANN were highly correlated ( ≥ 0.99). The spatial location of TBR was identical in almost all cases (96%). The ANN and the manual reference produced similar changes in the clinical metrics between baseline and follow-up scans.

CONCLUSION

The proposed ANN achieved high concordance with the manual reference and may be an important tool for decision aid, limiting inter-reader variance and improving longitudinal evaluation in clinical routine, and for future multicenter studies of pediatric CNS tumors.

摘要

引言

脑和中枢神经系统(CNS)肿瘤是儿童和青少年中第二常见的癌症类型。使用放射性标记氨基酸的正电子发射断层扫描(PET)成像可显示脑肿瘤细胞与健康脑组织相比对氨基酸的摄取情况,这为磁共振成像(MRI)在鉴别诊断、治疗规划以及区分肿瘤复发与治疗相关变化方面提供了额外信息。然而,肿瘤轮廓勾画是一项耗时的任务,且存在阅片者间的差异。我们提出一种深度学习方法用于自动勾画O-(2-[F]氟乙基)-L-酪氨酸([F]FET PET)小儿中枢神经系统肿瘤。

方法

纳入了来自66例小儿患者的109次[F]FET PET和MRI扫描,这些扫描均有手动勾画的参考轮廓。我们训练了一个人工神经网络(ANN)用于自动勾画,并将其在轮廓勾画准确性以及后续临床指标准确性方面的表现与手动参考进行比较。对于临床指标,我们提取了生物肿瘤体积(BTV)以及肿瘤与背景的平均和最大比值(TBR和TBR)。

结果

ANN产生了较高的肿瘤重叠度(中位骰子相似性系数[DSC]为0.93)。通过手动参考和ANN提取的临床指标高度相关(≥0.99)。几乎在所有病例(96%)中,TBR的空间位置都是相同的。ANN和手动参考在基线扫描和随访扫描之间的临床指标变化相似。

结论

所提出的ANN与手动参考具有高度一致性,可能是一种重要的辅助决策工具,可限制阅片者间的差异并改善临床常规中的纵向评估,也可用于未来小儿中枢神经系统肿瘤的多中心研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5359/11440972/987c8003cb0f/fnume-02-960820-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验