Suppr超能文献

MXene中的轨道对称性破缺实现了增强型柔性生物电子植入物。

Orbit symmetry breaking in MXene implements enhanced soft bioelectronic implants.

作者信息

Wu Yizhang, Li Yuan, Liu Yihan, Zhu Dashuai, Xing Sicheng, Lambert Noah, Weisbecker Hannah, Liu Siyuan, Davis Brayden, Zhang Lin, Wang Meixiang, Yuan Gongkai, You Chris Zhoufan, Zhang Anran, Duncan Cate, Xie Wanrong, Wang Yihang, Wang Yong, Kanamurlapudi Sreya, Evert Garcia-Guzman, Putcha Arjun, Dickey Michael D, Huang Ke, Bai Wubin

机构信息

Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.

Department of Biomedical Engineering, Columbia University, NY, New York 10032, USA.

出版信息

Sci Adv. 2024 Oct 4;10(40):eadp8866. doi: 10.1126/sciadv.adp8866. Epub 2024 Oct 2.

Abstract

Bioelectronic implants featuring soft mechanics, excellent biocompatibility, and outstanding electrical performance hold promising potential to revolutionize implantable technology. These biomedical implants can record electrophysiological signals and execute direct therapeutic interventions within internal organs, offering transformative potential in the diagnosis, monitoring, and treatment of various pathological conditions. However, challenges remain in improving excessive impedance at the bioelectronic-tissue interface and thus the efficacy of electrophysiological signaling and intervention. Here, we devise orbit symmetry breaking in MXene (a low-cost scalability, biocompatible, and conductive two dimensionally layered material, which we refer to as OBXene), which exhibits low bioelectronic-tissue impedance, originating from the out-of-plane charge transfer. Furthermore, the Schottky-induced piezoelectricity stemming from the asymmetric orbital configuration of OBXene facilitates interlayered charge transport in the device. We report an OBXene-based cardiac patch applied on the left ventricular epicardium of both rodent and porcine models to enable spatiotemporal epicardium mapping and pacing while coupling the wireless and battery-free operation for long-term real-time recording and closed-loop stimulation.

摘要

具有柔软力学性能、出色生物相容性和卓越电学性能的生物电子植入物,有望彻底改变可植入技术。这些生物医学植入物能够记录电生理信号,并在内部器官内进行直接治疗干预,在各种病理状况的诊断、监测和治疗方面具有变革潜力。然而,在改善生物电子 - 组织界面处过高的阻抗以及电生理信号传导和干预的功效方面,仍然存在挑战。在此,我们设计了MXene中的轨道对称性破缺(一种低成本、可扩展、生物相容且导电的二维层状材料,我们将其称为OBXene),它具有低生物电子 - 组织阻抗,源于面外电荷转移。此外,由OBXene不对称轨道构型引起的肖特基诱导压电性促进了器件中的层间电荷传输。我们报道了一种基于OBXene的心脏贴片,应用于啮齿动物和猪模型的左心室心外膜,以实现时空心外膜标测和起搏,同时结合无线和无电池操作,用于长期实时记录和闭环刺激。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cad/11446273/b17f72ed5da7/sciadv.adp8866-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验