Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27599.
Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.
Proc Natl Acad Sci U S A. 2024 Nov 26;121(48):e2412684121. doi: 10.1073/pnas.2412684121. Epub 2024 Nov 18.
Symmetry lies at the heart of two-dimensional (2D) bioelectronics, determining material properties at the fundamental level. Breaking the symmetry allows emergent functionalities and effects. However, symmetry modulation in 2D bioelectronics and the resultant applications have been largely overlooked. Here, we devise an oxidized architectural MXene, referred to as oxidized MXene (OXene), that couples orbit symmetric breaking with inverse symmetric breaking to entitle the optimized interfacial impedance and Schottky-induced piezoelectric effects. The resulting OXene validates applications ranging from microelectrode arrays, gait analysis, active transistor matrix, and wireless signaling transmission, which enables high-fidelity signal transmission and reconfigurable logic gates. Furthermore, OXene interfaces were investigated in both rodent and porcine myocardium, featuring high-quality and spatiotemporally resolved physiological recordings, while accurate differentiated predictions, enabled via various machine learning pipelines.
对称性是二维(2D)生物电子学的核心,决定了基础层面的材料特性。打破对称性可以产生新的功能和效应。然而,二维生物电子学中的对称性调制及其产生的应用在很大程度上被忽视了。在这里,我们设计了一种氧化的 MXene 结构,称为氧化 MXene(OXene),它将轨道对称破缺与反对称破缺相结合,使优化的界面阻抗和肖特基诱导的压电效应成为可能。所得到的 OXene 验证了从微电极阵列、步态分析、有源晶体管矩阵和无线信号传输等各种应用,从而实现了高保真信号传输和可重构逻辑门。此外,我们还研究了 OXene 与啮齿动物和猪心肌的界面,其特点是具有高质量和时空分辨率的生理记录,同时通过各种机器学习管道实现了准确的差异化预测。