Suppr超能文献

用于黄斑裂孔手术视觉结果预测的监督式机器学习统计模型:一项单术者、标准化手术研究

Supervised machine learning statistical models for visual outcome prediction in macular hole surgery: a single-surgeon, standardized surgery study.

作者信息

Godani Kanika, Prabhu Vishma, Gandhi Priyanka, Choudhary Ayushi, Darade Shubham, Kathare Rupal, Hande Prathiba, Venkatesh Ramesh

机构信息

Department of Retina and Vitreous, Narayana Nethralaya, #121/C, 1st R Block, Chord Road, Rajaji Nagar, Bengaluru, 560010, India.

Narayana Nethralaya, #121/C, Chord Road, 1st R Block Rajaji Nagar, Bangalore, 560010, India.

出版信息

Int J Retina Vitreous. 2025 Jan 13;11(1):5. doi: 10.1186/s40942-025-00630-3.

Abstract

PURPOSE

To evaluate the predictive accuracy of various machine learning (ML) statistical models in forecasting postoperative visual acuity (VA) outcomes following macular hole (MH) surgery using preoperative optical coherence tomography (OCT) parameters.

METHODS

This retrospective study included 158 eyes (151 patients) with full-thickness MHs treated between 2017 and 2023 by the same surgeon and using the same intraoperative surgical technique. Data from electronic medical records and OCT scans were extracted, with OCT-derived qualitative and quantitative MH characteristics recorded. Six supervised ML models-ANCOVA, Random Forest (RF) regression, K-Nearest Neighbor, Support Vector Machine, Extreme Gradient Boosting, and Lasso regression-were trained using an 80:20 training-to-testing split. Model performance was evaluated on an independent testing dataset using the XLSTAT software. In total, the ML statistical models were trained and tested on 14,652 OCT data points from 1332 OCT images.

RESULTS

Overall, 91% achieved MH closure post-surgery, with a median VA gain of -0.3 logMAR units. The RF regression model outperformed other ML models, achieving the lowest mean square error (MSE = 0.038) on internal validation. The most significant predictors of VA were postoperative MH closure status (variable importance = 43.078) and MH area index (21.328). The model accurately predicted the post-operative VA within 0.1, 0.2 and 0.3 logMAR units in 61%, 78%, and 87% of OCT images, respectively.

CONCLUSION

The RF regression model demonstrated superior predictive accuracy for forecasting postoperative VA, suggesting ML-driven approaches may improve surgical planning and patient counselling by providing reliable insights into expected visual outcomes based on pre-operative OCT features.

CLINICAL TRIAL REGISTRATION NUMBER

Not applicable.

摘要

目的

使用术前光学相干断层扫描(OCT)参数,评估各种机器学习(ML)统计模型预测黄斑裂孔(MH)手术后视力(VA)结果的预测准确性。

方法

这项回顾性研究纳入了2017年至2023年间由同一位外科医生采用相同术中手术技术治疗的158只眼睛(151例患者)的全层MH。提取电子病历和OCT扫描数据,记录OCT衍生的定性和定量MH特征。使用80:20的训练与测试分割比例对六个监督ML模型——协方差分析(ANCOVA)、随机森林(RF)回归、K近邻、支持向量机、极端梯度提升和套索回归——进行训练。使用XLSTAT软件在独立测试数据集上评估模型性能。总共在来自1332张OCT图像的14,652个OCT数据点上对ML统计模型进行训练和测试。

结果

总体而言,91%的患者术后MH闭合,平均视力增益中位数为-0.3 logMAR单位。RF回归模型优于其他ML模型,在内部验证中实现了最低均方误差(MSE = 0.038)。VA的最重要预测因素是术后MH闭合状态(变量重要性 = 43.078)和MH面积指数(21.328)。该模型分别在61%、78%和87%的OCT图像中准确预测了术后视力在0.1、0.2和0.3 logMAR单位以内。

结论

RF回归模型在预测术后视力方面表现出卓越的预测准确性,表明基于ML的方法可能通过根据术前OCT特征提供对预期视觉结果的可靠见解来改善手术规划和患者咨询。

临床试验注册号

不适用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/102c/11727234/ae30d472d368/40942_2025_630_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验