Suppr超能文献

未来蚊子研究人员的工作将变得更加轻松:在意大利进行的实地测试支持 VECTRACK 系统,用于自动计数、鉴定和白纹伊蚊和致倦库蚊成蚊的绝对密度估计。

An easier life to come for mosquito researchers: field-testing across Italy supports VECTRACK system for automatic counting, identification and absolute density estimation of Aedes albopictus and Culex pipiens adults.

机构信息

Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.

Center for Health Emergencies, Fondazione Bruno Kessler, Trento, Italy.

出版信息

Parasit Vectors. 2024 Oct 2;17(1):409. doi: 10.1186/s13071-024-06479-z.

Abstract

BACKGROUND

Disease-vector mosquito monitoring is an essential prerequisite to optimize control interventions and evidence-based risk predictions. However, conventional entomological monitoring methods are labor- and time-consuming and do not allow high temporal/spatial resolution. In 2022, a novel system coupling an optical sensor with machine learning technologies (VECTRACK) proved effective in counting and identifying Aedes albopictus and Culex pipiens adult females and males. Here, we carried out the first extensive field evaluation of the VECTRACK system to assess: (i) whether the catching capacity of a commercial BG-Mosquitaire trap (BGM) for adult mosquito equipped with VECTRACK (BGM + VECT) was affected by the sensor; (ii) the accuracy of the VECTRACK algorithm in correctly classifying the target mosquito species genus and sex; (iii) Ae. albopictus capture rate of BGM with or without VECTRACK.

METHODS

The same experimental design was implemented in four areas in northern (Bergamo and Padua districts), central (Rome) and southern (Procida Island, Naples) Italy. In each area, three types of traps-one BGM, one BGM + VECT and the combination of four sticky traps (STs)-were rotated each 48 h in three different sites. Each sampling scheme was replicated three times/area. Collected mosquitoes were counted and identified by both the VECTRACK algorithm and operator-mediated morphological examination. The performance of the VECTRACK system was assessed by generalized linear mixed and linear regression models. Aedes albopictus capture rates of BGMs were calculated based on the known capture rate of ST.

RESULTS

A total of 3829 mosquitoes (90.2% Ae. albopictus) were captured in 18 collection-days/trap/site. BGM and BGM + VECT showed a similar performance in collecting target mosquitoes. Results show high correlation between visual and automatic identification methods (Spearman Ae. albopictus: females = 0.97; males = 0.89; P < 0.0001) and low count errors. Moreover, the results allowed quantifying the heterogeneous effectiveness associated with different trap types in collecting Ae. albopictus and predicting estimates of its absolute density.

CONCLUSIONS

Obtained results strongly support the VECTRACK system as a powerful tool for mosquito monitoring and research, and its applicability over a range of ecological conditions, accounting for its high potential for continuous monitoring with minimal human effort.

摘要

背景

病媒蚊监测是优化控制干预措施和基于证据的风险预测的必要前提。然而,传统的昆虫学监测方法既耗时又费力,无法实现高时间/空间分辨率。2022 年,一种结合光学传感器和机器学习技术的新型系统(VECTRACK)在计数和识别白纹伊蚊和致倦库蚊的成年雌性和雄性方面被证明是有效的。在这里,我们首次对 VECTRACK 系统进行了广泛的现场评估,以评估:(i)配备 VECTRACK 的商用 BG-Mosquitaire 诱捕器(BGM)对成年蚊子的捕蚊能力是否受传感器影响;(ii)VECTRACK 算法正确分类目标蚊子属和性别的准确性;(iii)BGM 诱捕器有无 VECTRACK 对白纹伊蚊的捕获率。

方法

在意大利北部(贝加莫和帕多瓦地区)、中部(罗马)和南部(那不勒斯的普罗奇达岛)的四个地区实施了相同的实验设计。在每个地区,三种类型的诱捕器——一种 BGM、一种 BGM+VECT 和四种粘性诱捕器(STs)的组合——每 48 小时在三个不同的地点轮换一次。每个采样方案在每个地区重复三次。收集的蚊子由 VECTRACK 算法和操作人员介导的形态学检查进行计数和识别。通过广义线性混合和线性回归模型评估 VECTRACK 系统的性能。根据 ST 已知的捕获率计算 BGM 对白纹伊蚊的捕获率。

结果

在 18 个采集日/诱捕器/地点/天,共捕获了 3829 只蚊子(90.2%为白纹伊蚊)。BGM 和 BGM+VECT 在收集目标蚊子方面表现相似。结果表明,视觉和自动识别方法之间具有高度相关性(斯皮尔曼白纹伊蚊:雌性=0.97;雄性=0.89;P<0.0001),并且计数误差较低。此外,结果还允许量化与不同诱捕器类型相关的异质有效性,以收集白纹伊蚊并预测其绝对密度的估计值。

结论

获得的结果强烈支持 VECTRACK 系统作为蚊子监测和研究的强大工具,以及其在一系列生态条件下的适用性,考虑到其在最小人工干预下进行连续监测的高潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a474/11448096/e4ada407b5d9/13071_2024_6479_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验