Suppr超能文献

细胞应激时,核糖体在线粒体中休眠。

Ribosomes hibernate on mitochondria during cellular stress.

机构信息

European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstraße 1, Heidelberg, Germany.

Department of Molecular Physiology and Biological Physics and Center for Cell and Membrane Physiology, School of Medicine, University of Virginia, Charlottesville, USA.

出版信息

Nat Commun. 2024 Oct 8;15(1):8666. doi: 10.1038/s41467-024-52911-4.

Abstract

Cell survival under nutrient-deprived conditions relies on cells' ability to adapt their organelles and rewire their metabolic pathways. In yeast, glucose depletion induces a stress response mediated by mitochondrial fragmentation and sequestration of cytosolic ribosomes on mitochondria. This cellular adaptation promotes survival under harsh environmental conditions; however, the underlying mechanism of this response remains unknown. Here, we demonstrate that upon glucose depletion protein synthesis is halted. Cryo-electron microscopy structure of the ribosomes show that they are devoid of both tRNA and mRNA, and a subset of the particles depicted a conformational change in rRNA H69 that could prevent tRNA binding. Our in situ structural analyses reveal that the hibernating ribosomes tether to fragmented mitochondria and establish eukaryotic-specific, higher-order storage structures by assembling into oligomeric arrays on the mitochondrial surface. Notably, we show that hibernating ribosomes exclusively bind to the outer mitochondrial membrane via the small ribosomal subunit during cellular stress. We identify the ribosomal protein Cpc2/RACK1 as the molecule mediating ribosomal tethering to mitochondria. This study unveils the molecular mechanism connecting mitochondrial stress with the shutdown of protein synthesis and broadens our understanding of cellular responses to nutrient scarcity and cell quiescence.

摘要

在营养匮乏的条件下,细胞的存活依赖于其适应细胞器和重新连接代谢途径的能力。在酵母中,葡萄糖耗尽会诱导线粒体片段化和细胞质核糖体在线粒体上的隔离介导的应激反应。这种细胞适应促进了在恶劣环境条件下的生存;然而,这种反应的潜在机制尚不清楚。在这里,我们证明葡萄糖耗尽会停止蛋白质合成。核糖体的冷冻电子显微镜结构表明,它们既没有 tRNA 也没有 mRNA,并且一小部分颗粒显示 rRNA H69 的构象变化,这可能会阻止 tRNA 结合。我们的原位结构分析揭示了休眠核糖体通过在线粒体表面组装成寡聚体阵列与碎片化的线粒体相连,并通过组装成寡聚体阵列建立真核生物特有的、更高阶的储存结构。值得注意的是,我们表明休眠核糖体在细胞应激期间仅通过小核糖体亚基与外膜结合。我们确定核糖体蛋白 Cpc2/RACK1 作为介导核糖体与线粒体连接的分子。这项研究揭示了连接线粒体应激与蛋白质合成关闭的分子机制,并拓宽了我们对细胞对营养缺乏和细胞静止的反应的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d6b/11461667/9650753878a3/41467_2024_52911_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验