Suppr超能文献

深度学习方法在全膝关节置换术假体选择中术前决策的临床验证。

Clinical validation of a deep learning-based approach for preoperative decision-making in implant size for total knee arthroplasty.

机构信息

Department of Orthopaedic Surgery, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, South Korea.

Industrial R&D Center, Kavilab Co., Ltd, Seoul, South Korea.

出版信息

J Orthop Surg Res. 2024 Oct 8;19(1):637. doi: 10.1186/s13018-024-05128-6.

Abstract

BACKGROUND

Orthopedic surgeons use manual measurements, acetate templating, and dedicated software to determine the appropriate implant size for total knee arthroplasty (TKA). This study aimed to use deep learning (DL) to assist in deciding the femoral and tibial implant sizes without manual manipulation and to evaluate the clinical validity of the DL decision by comparing it with conventional manual procedures.

METHODS

Two types of DL were used to detect the femoral and tibial regions using the You Only Look Once algorithm model and to determine the implant size from the detected regions using convolutional neural network. An experienced surgeon predicted the implant size for 234 patient cases using manual procedures, and the DL model also predicted the implant sizes for the same cases.

RESULTS

The exact accuracies of the surgeon's template were 61.54% and 68.38% for predicting femoral and tibial implant sizes, respectively. Meanwhile, the proposed DL model reported exact accuracies of 89.32% and 90.60% for femoral and tibial implant sizes, respectively. The accuracy ± 1 levels of the surgeon and proposed DL model were 97.44% and 97.86%, respectively, for the femoral implant size and 98.72% for both the surgeon and proposed DL model for the tibial implant size.

CONCLUSION

The observed differences and higher agreement levels achieved by the proposed DL model demonstrate its potential as a valuable tool in preoperative decision-making for TKA. By providing accurate predictions of implant size, the proposed DL model has the potential to optimize implant selection, leading to improved surgical outcomes.

摘要

背景

骨科医生使用手动测量、醋酸模板和专用软件来确定全膝关节置换术(TKA)的合适植入物尺寸。本研究旨在使用深度学习(DL)来辅助确定股骨和胫骨植入物的尺寸,而无需手动操作,并通过与传统手动程序进行比较来评估 DL 决策的临床有效性。

方法

使用两种类型的 DL 使用 You Only Look Once 算法模型检测股骨和胫骨区域,并使用卷积神经网络从检测到的区域确定植入物尺寸。一位经验丰富的外科医生使用手动程序预测了 234 例患者的植入物尺寸,DL 模型也预测了相同病例的植入物尺寸。

结果

外科医生模板预测股骨和胫骨植入物尺寸的精确准确率分别为 61.54%和 68.38%。同时,所提出的 DL 模型报告了股骨和胫骨植入物尺寸的精确准确率分别为 89.32%和 90.60%。外科医生和提出的 DL 模型的准确度±1 水平分别为股骨植入物尺寸的 97.44%和 97.86%,以及胫骨植入物尺寸的 98.72%。

结论

所观察到的差异和更高的一致性水平表明,所提出的 DL 模型具有作为 TKA 术前决策有价值工具的潜力。通过提供植入物尺寸的准确预测,所提出的 DL 模型有可能优化植入物选择,从而改善手术结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12c0/11463000/febd53893b83/13018_2024_5128_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验