Synnatschke Kevin, Müller Alina, Gabbett Cian, Mohn Michael Johannes, Kelly Adam G, Mosina Kseniia, Wu Bing, Caffrey Eoin, Cassidy Oran, Backes Claudia, Sofer Zdenek, Kaiser Ute, Coleman Jonathan N
School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland.
Chair of Applied Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.
ACS Nano. 2024 Oct 22;18(42):28596-28608. doi: 10.1021/acsnano.4c04626. Epub 2024 Oct 9.
Graphite is one of only a few layered materials that can be exfoliated into nanosheets with semimetallic properties, which limits the applications of nanosheet-based electrodes to material combinations compatible with the work function of graphene. It is therefore important to identify additional metallic or semimetallic two-dimensional (2D) nanomaterials that can be processed in solution for scalable fabrication of printed electronic devices. Metal diborides represent a family of layered non-van der Waals crystals with semimetallic properties for all nanosheet thicknesses. While previous reports show that the exfoliated nanomaterial is prone to oxidation, we demonstrate a readily accessible inert exfoliation process to produce quasi-2D nanoplatelets with intrinsic material properties. For this purpose, we demonstrate the exfoliation of three representative metal diborides (MgB, CrB, and ZrB) under inert conditions. Nanomaterial is characterized using a combination of transmission electron microscopy, scanning electron microscopy, atomic force microscopy, IR, and UV-vis measurements, with only minimal oxidation indicated postprocessing. By depositing the pristine metal diboride nanoplatelets as thin films using a Langmuir-type deposition technique, the ohmic behavior of the networks is validated. Furthermore, the material decomposition is studied by using a combination of electrical and optical measurements after controlled exposure to ambient conditions. Finally, we report an efficient, low-cost approach for sample encapsulation to protect the nanomaterials from oxidation. This is used to demonstrate low-gauge factor strain sensors, confirming metal diboride nanosheets as a suitable alternative to graphene for electrode materials in printed electronics.
石墨是少数几种可剥离成具有半金属特性的纳米片的层状材料之一,这限制了基于纳米片的电极在与石墨烯功函数兼容的材料组合中的应用。因此,识别其他可在溶液中加工以实现印刷电子器件可扩展制造的金属或半金属二维(2D)纳米材料非常重要。金属硼化物是一类层状非范德华晶体,对于所有纳米片厚度都具有半金属特性。虽然先前的报告表明剥离的纳米材料易于氧化,但我们展示了一种易于实现的惰性剥离工艺,以生产具有固有材料特性的准二维纳米片。为此,我们展示了三种代表性金属硼化物(MgB、CrB和ZrB)在惰性条件下的剥离。使用透射电子显微镜、扫描电子显微镜、原子力显微镜、红外和紫外可见测量相结合的方法对纳米材料进行表征,后处理后仅显示出最小程度的氧化。通过使用朗缪尔型沉积技术将原始金属硼化物纳米片沉积为薄膜,验证了网络的欧姆行为。此外,在受控暴露于环境条件后,通过结合电学和光学测量来研究材料分解。最后,我们报告了一种高效、低成本的样品封装方法,以保护纳米材料不被氧化。这用于展示低应变系数应变传感器,证实金属硼化物纳米片是印刷电子中电极材料的石墨烯的合适替代品。