文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于乳腺癌病理图像分类的新型嵌入式核 CNN-PCFF 算法。

A novel embedded kernel CNN-PCFF algorithm for breast cancer pathological image classification.

机构信息

School of Mathematics and Statistics, Qiannan Normal University for Nationalities, Duyun, 558000, Guizhou, China.

Key Laboratory of Complex Systems and Intelligent Optimization of Guizhou Province, Duyun, 558000, Guizhou, China.

出版信息

Sci Rep. 2024 Oct 10;14(1):23758. doi: 10.1038/s41598-024-74025-z.


DOI:10.1038/s41598-024-74025-z
PMID:39390003
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11467218/
Abstract

Early screening of breast cancer through image recognition technology can significantly increase the survival rate of patients. Therefore, breast cancer pathological image is of great significance for medical diagnosis and clinical research. In recent years, numerous deep learning models have been applied to breast cancer image classification, with deep CNN being a typical representative. Due to the use of multi-depth small convolutional kernels in mainstream CNN architectures such as VGG and Inception, the obtained image features often have high dimensionality. Although high dimensionality can bring more fine-grained features, it also increases the computational complexity of subsequent classifiers and may even lead to the curse of dimensionality and overfitting. To address these issues, a novel embedded kernel CNN principal component feature fusion (CNN-PCFF) algorithm is proposed. The constructed kernel function is embedded in the principal component analysis to form the multi-kernel principal component. Multi-kernel principal component analysis is used to fuse the high dimensional features obtained from the convolution base into some representative comprehensive variables, which are called kernel principal components, so as to achieve the purpose of dimensionality reduction. Any type of classifier can be added based on multi-kernel principal components. Through experimental analysis on two public breast cancer image datasets, the results show that the proposed algorithm can improve the performance of the current mainstream CNN architecture and subsequent classifiers. Therefore, the proposed algorithm in this paper is an effective tool for the classification of breast cancer pathological images.

摘要

通过图像识别技术进行早期乳腺癌筛查可以显著提高患者的生存率。因此,乳腺癌病理图像对于医学诊断和临床研究具有重要意义。近年来,许多深度学习模型已被应用于乳腺癌图像分类,深度卷积神经网络(CNN)是一个典型的代表。由于主流 CNN 架构(如 VGG 和 Inception)中使用了多深度小卷积核,因此获得的图像特征通常具有较高的维度。虽然高维度可以带来更细粒度的特征,但它也增加了后续分类器的计算复杂度,甚至可能导致维度灾难和过拟合。针对这些问题,提出了一种新的嵌入式核 CNN 主成分特征融合(CNN-PCFF)算法。所构建的核函数被嵌入到主成分分析中,形成多核主成分。多核主成分分析用于融合卷积基中获得的高维特征,形成一些具有代表性的综合变量,称为核主成分,从而达到降维的目的。可以基于多核主成分添加任何类型的分类器。通过对两个公共乳腺癌图像数据集的实验分析,结果表明,所提出的算法可以提高当前主流 CNN 架构和后续分类器的性能。因此,本文提出的算法是乳腺癌病理图像分类的有效工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5369/11467218/272e80749251/41598_2024_74025_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5369/11467218/786565f06e3b/41598_2024_74025_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5369/11467218/7a18e84647cb/41598_2024_74025_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5369/11467218/f17426fe7da0/41598_2024_74025_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5369/11467218/272e80749251/41598_2024_74025_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5369/11467218/786565f06e3b/41598_2024_74025_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5369/11467218/7a18e84647cb/41598_2024_74025_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5369/11467218/f17426fe7da0/41598_2024_74025_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5369/11467218/272e80749251/41598_2024_74025_Fig4_HTML.jpg

相似文献

[1]
A novel embedded kernel CNN-PCFF algorithm for breast cancer pathological image classification.

Sci Rep. 2024-10-10

[2]
Breast Cancer Classification in Automated Breast Ultrasound Using Multiview Convolutional Neural Network with Transfer Learning.

Ultrasound Med Biol. 2020-5

[3]
Advanced feature learning and classification of microscopic breast abnormalities using a robust deep transfer learning technique.

Microsc Res Tech. 2024-8

[4]
Research on breast cancer pathological image classification method based on wavelet transform and YOLOv8.

J Xray Sci Technol. 2024

[5]
Skin-CAD: Explainable deep learning classification of skin cancer from dermoscopic images by feature selection of dual high-level CNNs features and transfer learning.

Comput Biol Med. 2024-8

[6]
Analysis of the role and robustness of artificial intelligence in commodity image recognition under deep learning neural network.

PLoS One. 2020-7-7

[7]
Deep Learning Technology in Pathological Image Analysis of Breast Tissue.

J Healthc Eng. 2021

[8]
Breast cancer pathological image classification based on deep learning.

J Xray Sci Technol. 2020

[9]
Automatically Designing CNN Architectures Using the Genetic Algorithm for Image Classification.

IEEE Trans Cybern. 2020-9

[10]
Deep learning approaches for breast cancer detection in histopathology images: A review.

Cancer Biomark. 2024

引用本文的文献

[1]
Current paradigm and futuristic vision on new-onset diabetes and pancreatic cancer research.

Front Pharmacol. 2025-5-23

[2]
Privacy-preserving federated learning for collaborative medical data mining in multi-institutional settings.

Sci Rep. 2025-4-11

本文引用的文献

[1]
Breast Cancer Statistics, 2022.

CA Cancer J Clin. 2022-11

[2]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

[3]
Breast Cancer Histopathology Image Classification Using an Ensemble of Deep Learning Models.

Sensors (Basel). 2020-8-5

[4]
Role of Bone Targeting Agents in the Prevention of Bone Metastases from Breast Cancer.

Int J Mol Sci. 2020-4-24

[5]
Classification of glomerular hypercellularity using convolutional features and support vector machine.

Artif Intell Med. 2020-3

[6]
Interactive Medical Image Segmentation Using Deep Learning With Image-Specific Fine Tuning.

IEEE Trans Med Imaging. 2018-7

[7]
A survey on deep learning in medical image analysis.

Med Image Anal. 2017-7-26

[8]
A Deep Convolutional Neural Network for segmenting and classifying epithelial and stromal regions in histopathological images.

Neurocomputing (Amst). 2016-5-26

[9]
A new genome-driven integrated classification of breast cancer and its implications.

EMBO J. 2013-2-8

[10]
A framework for multiple kernel support vector regression and its applications to siRNA efficacy prediction.

IEEE/ACM Trans Comput Biol Bioinform. 2009

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索