Jadhav Vikram, Bhagare Arun, Palake Ashwini, Kodam Kisan, Dhaygude Akshay, Kardel Anant, Lokhande Dnyaneshwar, Aher Jayraj
Department of Chemistry, M. V. P. Samaj's K. K. Wagh Arts, Science, and Commerce College, Pimpalgaon (B.), Nashik, Maharashtra, 422209, India.
Post Graduate Department of Chemistry, K. R. T. Arts, B. H. Commerce, and A. M. Science College, Nashik, Maharashtra, 422209, India.
Discov Nano. 2024 Oct 14;19(1):170. doi: 10.1186/s11671-024-04123-4.
In this work, we reported the synthesis of honey bee (Apis mellifera) venom-derived nanoparticles via a hydrothermal method. This method not only ensures the preservation of the bee venom's bioactive components but also enhances their potential stability, thus broadening the scope for their applications in the biomedicinal field. The synthesis method started with the homogenization suspension of bee venom, followed by its hydrothermal process to synthesize bee venom nanoparticles (BVNPs). The successful synthesis of BVNPs was characterized using various characteristic techniques such as Ultraviolet-visible (UV-Vis) spectroscopy, Fourier Transforms Infrared (FTIR) Spectroscopy, Zeta Potential (ZP), Liquid Chromatography-Mass Spectrometry (LCMS), and Transmission Electron Microscopy (TEM). The synthesis of BVNPs through biosynthesis is shown by the visible violet-brown color development at 347 nm by UV-Vis spectroscopy. FTIR analysis revealed the presence of several functional groups in the BVNPs, including alcohols (-OH), phenols (CH-), carboxylic acids (-COOH), amines (-NH, -NH-), aldehydes (-CHO), ketones (-CO-), nitriles (-CN), amides (-CO-N-), imines (-CNH-), esters (-COO-), and polysaccharides. These functional groups, as confirmed by their specific stretching and bending vibrational modes, contribute to the diverse biological activities of BVNPs, including cytotoxicity against MCF-7 breast cancer cells. The ZP of the BVNPs indicated good colloidal stability at - 45 mV. LCMS analysis confirmed the presence of major bioactive molecules, including melittin & apamin and TEM analysis shows the BVNPs exhibited a quasi-spherical shape with good dispersion, the average size was approximately 25 nm, with some being smaller (quantum dots) and interplanar spacing of 0.236 nm indicated a highly ordered crystalline structure. Moreover, the anticancer efficacy of the BVNPs was ascertained through in vitro assays against MCF-7 breast cancer cells, showing a dose-dependent cytotoxic effect. The findings of this study underscore the viability of hydrothermal synthesis in producing biologically active and structurally stable BVNPs, with a significant potential for anticancer activities.
在本研究中,我们报道了通过水热法合成蜜蜂(意大利蜜蜂)毒液衍生的纳米颗粒。该方法不仅确保了蜂毒生物活性成分的保留,还提高了它们的潜在稳定性,从而拓宽了其在生物医学领域的应用范围。合成方法始于蜂毒的匀浆悬浮液,随后通过水热过程合成蜂毒纳米颗粒(BVNPs)。使用各种特征技术对BVNPs的成功合成进行了表征,如紫外可见(UV-Vis)光谱、傅里叶变换红外(FTIR)光谱、zeta电位(ZP)、液相色谱-质谱(LCMS)和透射电子显微镜(TEM)。通过UV-Vis光谱在347nm处出现可见的紫棕色显色表明通过生物合成合成了BVNPs。FTIR分析揭示了BVNPs中存在几个官能团,包括醇类(-OH)、酚类(CH-)、羧酸类(-COOH)、胺类(-NH,-NH-)、醛类(-CHO)、酮类(-CO-)、腈类(-CN)、酰胺类(-CO-N-)、亚胺类(-CNH-)、酯类(-COO-)和多糖。这些官能团通过其特定的伸缩和弯曲振动模式得到证实,有助于BVNPs的多种生物活性,包括对MCF-7乳腺癌细胞的细胞毒性。BVNPs的ZP在-45mV时表明具有良好的胶体稳定性。LCMS分析证实了主要生物活性分子的存在,包括蜂毒肽和蜂毒明肽,TEM分析表明BVNPs呈现准球形,分散性良好,平均尺寸约为25nm,有些较小(量子点),晶面间距为0.236nm表明具有高度有序的晶体结构。此外,通过对MCF-7乳腺癌细胞的体外试验确定了BVNPs的抗癌功效,显示出剂量依赖性的细胞毒性作用。本研究结果强调了水热合成在生产具有生物活性和结构稳定的BVNPs方面的可行性,具有显著的抗癌活性潜力。