Stojanovski David, Hermida Uxio, Lamata Pablo, Beqiri Arian, Gomez Alberto
King's College London, School of Biomedical Engineering & Imaging Sciences, London, SE1 7EU, UK.
Ultromics Ltd., Oxford, OX4 2SU, UK.
Simpl Med Ultrasound (2023). 2023;14337:34-43. doi: 10.1007/978-3-031-44521-7_4. Epub 2023 Oct 1.
We propose a novel pipeline for the generation of synthetic ultrasound images via Denoising Diffusion Probabilistic Models (DDPMs) guided by cardiac semantic label maps. We show that these synthetic images can serve as a viable substitute for real data in the training of deep-learning models for ultrasound image analysis tasks such as cardiac segmentation. To demonstrate the effectiveness of this approach, we generated synthetic 2D echocardiograms and trained a neural network for segmenting the left ventricle and left atrium. The performance of the network trained on exclusively synthetic images was evaluated on an unseen dataset of real images and yielded mean Dice scores of 88.6 4.91, 91.9 4.22, 85.2 4.83 % for left ventricular endocardium, epicardium and left atrial segmentation respectively. This represents a relative increase of 9.2, 3.3 and 13.9 % in Dice scores compared to the previous state-of-the-art. The proposed pipeline has potential for application to a wide range of other tasks across various medical imaging modalities.
我们提出了一种新颖的流程,用于通过由心脏语义标签图引导的去噪扩散概率模型(DDPM)生成合成超声图像。我们表明,这些合成图像可以在诸如心脏分割等超声图像分析任务的深度学习模型训练中作为真实数据的可行替代品。为了证明这种方法的有效性,我们生成了合成二维超声心动图,并训练了一个神经网络来分割左心室和左心房。在一个未见的真实图像数据集上评估了仅在合成图像上训练的网络的性能,左心室内膜、心肌和左心房分割的平均骰子系数分别为88.6±4.91%、91.9±4.22%、85.2±4.83%。与先前的最先进技术相比,这代表骰子系数相对提高了9.2%、3.3%和13.9%。所提出的流程有潜力应用于跨各种医学成像模态的广泛其他任务。