Park Euyjin, Kim Seung-Hwan, Min Seong-Ji, Han Kyu-Hyun, Kim Jong-Hyun, Kim Seung-Geun, Ahn Tae-Hang, Yu Hyun-Yong
School of Electrical Engineering, Korea University, Seoul 02841, Korea.
Center of Spintronics, Korea Institute of Science and Technology, Seoul 02792, Korea.
ACS Nano. 2024 Oct 29;18(43):29771-29778. doi: 10.1021/acsnano.4c09384. Epub 2024 Oct 15.
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) known for their exceptional electrical and optical properties have emerged as promising channel materials for next-generation electronics. However, as strong Fermi-level pinning (FLP) between the metal and the 2D TMDC material at the source/drain (S/D) contact decides the Schottky barrier height (SBH), the transistor polarity is fixed to a certain type, which remains a challenge for the 2D TMDC field-effect transistors (FETs). Here, a S/D contact structure with a quasi-zero-dimensional (quasi-0D) contact interface, in which the dimensionality reduction effect alleviates FLP, was developed to gain controllability over the polarity of the 2D TMDC FET. As a result, conventional metal contacts on the WSe FET showed n-type characteristics due to strong FLP (pinning factor of 0.06) near the conduction band, and the proposed quasi-0D contact enabled by the Ag conductive filament on the WSe FET exhibited p-type characteristics with a SBH very close to the Schottky-Mott rule (pinning factor of 0.95). Furthermore, modeling of Schottky barriers of conventional contacts, one-dimensional (1D) contacts, and quasi-0D contacts revealed that the SBH of the quasi-0D contact is relatively less subject to interface dipoles that induce FLP, owing to more rapid decaying of dipole energy. The proposed contact in this study provided a method that progressed beyond the alleviation of FLP to achieve controllable polarity. Moreover, reducing the contact dimensionality to quasi-0D will enable high compatibility with the further scaled-down nanoscale device contact structure.
二维(2D)过渡金属二硫属化物(TMDC)因其优异的电学和光学性质而成为下一代电子学中很有前景的沟道材料。然而,由于源极/漏极(S/D)接触处金属与二维TMDC材料之间存在强费米能级钉扎(FLP),决定了肖特基势垒高度(SBH),晶体管极性被固定为某一类型,这仍然是二维TMDC场效应晶体管(FET)面临的一个挑战。在此,开发了一种具有准零维(准0D)接触界面的S/D接触结构,其中降维效应减轻了FLP,以实现对二维TMDC FET极性的可控性。结果,WSe FET上的传统金属接触由于导带附近的强FLP(钉扎因子为0.06)而呈现n型特性,而WSe FET上由Ag导电细丝实现的拟准0D接触则呈现p型特性,其SBH非常接近肖特基-莫特规则(钉扎因子为0.95)。此外,对传统接触、一维(1D)接触和准0D接触的肖特基势垒建模表明,由于偶极子能量衰减更快,准0D接触的SBH相对较少受到诱导FLP的界面偶极子的影响。本研究中提出的接触提供了一种超越减轻FLP以实现可控极性的方法。此外,将接触维数降低到准0D将与进一步缩小尺寸的纳米级器件接触结构实现高度兼容。