Suppr超能文献

一种基于机器学习的方法,利用医院就诊时的行政数据和健康社会决定因素来支持紧急脑卒中分诊:回顾性研究。

A Machine Learning Approach to Support Urgent Stroke Triage Using Administrative Data and Social Determinants of Health at Hospital Presentation: Retrospective Study.

机构信息

Department of Information Systems & Business Analytics, College of Business, Florida International University, Miami, FL, United States.

Department of Information Systems and Analytics, Leavey School of Business, Santa Clara University, Santa Clara, CA, United States.

出版信息

J Med Internet Res. 2023 Jan 30;25:e36477. doi: 10.2196/36477.

Abstract

BACKGROUND

The key to effective stroke management is timely diagnosis and triage. Machine learning (ML) methods developed to assist in detecting stroke have focused on interpreting detailed clinical data such as clinical notes and diagnostic imaging results. However, such information may not be readily available when patients are initially triaged, particularly in rural and underserved communities.

OBJECTIVE

This study aimed to develop an ML stroke prediction algorithm based on data widely available at the time of patients' hospital presentations and assess the added value of social determinants of health (SDoH) in stroke prediction.

METHODS

We conducted a retrospective study of the emergency department and hospitalization records from 2012 to 2014 from all the acute care hospitals in the state of Florida, merged with the SDoH data from the American Community Survey. A case-control design was adopted to construct stroke and stroke mimic cohorts. We compared the algorithm performance and feature importance measures of the ML models (ie, gradient boosting machine and random forest) with those of the logistic regression model based on 3 sets of predictors. To provide insights into the prediction and ultimately assist care providers in decision-making, we used TreeSHAP for tree-based ML models to explain the stroke prediction.

RESULTS

Our analysis included 143,203 hospital visits of unique patients, and it was confirmed based on the principal diagnosis at discharge that 73% (n=104,662) of these patients had a stroke. The approach proposed in this study has high sensitivity and is particularly effective at reducing the misdiagnosis of dangerous stroke chameleons (false-negative rate <4%). ML classifiers consistently outperformed the benchmark logistic regression in all 3 input combinations. We found significant consistency across the models in the features that explain their performance. The most important features are age, the number of chronic conditions on admission, and primary payer (eg, Medicare or private insurance). Although both the individual- and community-level SDoH features helped improve the predictive performance of the models, the inclusion of the individual-level SDoH features led to a much larger improvement (area under the receiver operating characteristic curve increased from 0.694 to 0.823) than the inclusion of the community-level SDoH features (area under the receiver operating characteristic curve increased from 0.823 to 0.829).

CONCLUSIONS

Using data widely available at the time of patients' hospital presentations, we developed a stroke prediction model with high sensitivity and reasonable specificity. The prediction algorithm uses variables that are routinely collected by providers and payers and might be useful in underresourced hospitals with limited availability of sensitive diagnostic tools or incomplete data-gathering capabilities.

摘要

背景

有效管理中风的关键在于及时诊断和分诊。为协助检测中风而开发的机器学习(ML)方法侧重于解释详细的临床数据,如临床记录和诊断成像结果。然而,当患者最初分诊时,这些信息可能不容易获得,特别是在农村和服务不足的社区。

目的

本研究旨在开发一种基于患者就诊时广泛可用的数据的 ML 中风预测算法,并评估社会决定因素(SDoH)在中风预测中的附加值。

方法

我们对 2012 年至 2014 年佛罗里达州所有急症护理医院的急诊室和住院记录进行了回顾性研究,并与美国社区调查中的 SDoH 数据合并。采用病例对照设计构建中风和中风模拟队列。我们比较了基于 3 组预测因子的 ML 模型(即梯度提升机和随机森林)与逻辑回归模型的算法性能和特征重要性度量。为了深入了解预测并最终协助护理人员做出决策,我们使用 TreeSHAP 为基于树的 ML 模型解释中风预测。

结果

我们的分析包括 143203 名独特患者的医院就诊,根据出院时的主要诊断确认其中 73%(n=104662)的患者患有中风。本研究提出的方法具有较高的灵敏度,特别有效地减少了危险的中风伪装者的误诊(假阴性率<4%)。在所有 3 种输入组合中,ML 分类器始终优于基准逻辑回归。我们发现,在解释其性能的特征方面,模型之间具有显著的一致性。最重要的特征是年龄、入院时的慢性疾病数量和主要支付者(例如,医疗保险或私人保险)。虽然个体和社区层面的 SDoH 特征都有助于提高模型的预测性能,但个体层面的 SDoH 特征的纳入导致了更大的改善(接收者操作特征曲线下面积从 0.694 增加到 0.823),而社区层面的 SDoH 特征的纳入仅导致了较小的改善(接收者操作特征曲线下面积从 0.823 增加到 0.829)。

结论

使用患者就诊时广泛可用的数据,我们开发了一种具有高灵敏度和合理特异性的中风预测模型。该预测算法使用提供者和支付者常规收集的变量,并且可能对资源有限的医院有用,这些医院的敏感诊断工具可用性有限或数据收集能力不完整。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5cd/9926350/ea9600f4296b/jmir_v25i1e36477_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验